

IN THE NAME OF ALLAH,
THE MOST MERCIFUL,
THE MOST GRACIOUS

Journal of

KING ABDULAZIZ UNIVERSITY

Computing and Information Technology Sciences

Volume 3

2014 A.D. / 1436 A.H.

Scientific Publishing Centre
King Abdulaziz University
P.O. Box 80200, Jeddah 21589
Saudi Arabia
http://spc.kau.edu.sa

Prof. Dr. Kamal M. Jambi
Computer Science Department kjambi@kau.edu.sa

Prof. Dr. Khalid Abdullah Fakeeh
Member
Information System Department
kfakeeh@kau.edu.sa

Prof. Dr. Fathy E. Eassa Member
Computer Science Department feassa@kau.edu.sa

Prof. Dr. Hassanin M. Albarhamtoshy
Member Information Technology Department hassanin@kau.edu.sa

Prof. Dr. Victor R. Basili
Member
Maryland University, CS Dept., USA basili@cs.umd.edu

Prof. Dr. Abdulfattah S. Mashat
Information Technology Department asmashat@kau.edu.sa

Member

Copy Price

- Local : SR 10.00
- External : US\$ 10.00

Subscription

Scientific Publishing Centre, King Abdulaziz University P.O. Box 80200, Jeddah 21589, Saudi Arabia

- Exchange

Deanship of Library Affairs, King Abdulaziz University P.O. Box 80213, Jeddah 21589, Saudi Arabia

(English Section)

- A Use-Modify Framework to Detect Feature Interactions in Web Services.
Ahmed Khoumsi and Zohair Chentouf........................
3
- Feasibility Verification and Performance Evaluation of Exclusion-Based VANETs (EBV).
Ahmad A. Al-Daraiseh, Mohammed A. Moharrum, and Ahmed Youssef.51

(Arabic Section)

- Utilization of the Modern Syllogistic Method in the Exploration of Hidden Aspects in Engineering Ethical Dilemmas (English Abstract). Ali Muhammad Rushdi, Taleb Mansour Alshehri, Mohamed Zarouan, and Muhammad Ali Rushdi.127
(English Section)

A Use-Modify Framework to Detect Feature Interactions in Web Services

Ahmed Khoumsi and Zohair Chentouf*
Department of Elect. \& Comp. Eng., University of Sherbrooke, Sherbrooke, Canada, and *Software Engineering Department, College of Information and Computer Sciences, King Saud University, Riyadh, KSA
zchentouf@ksu.edu.sa

Abstract

Composing Web services is often beneficial since created the new Web services from existing ones. However, Web service composition is prone to feature interactions, which denote undesirable behaviors arising when several Web services are used together. The existing methods for detecting feature interactions suffer generally from state space explosion. In this paper, we develop a method to detect feature interactions in Web services, which targets the reduction of state space explosion while trying to keep an acceptable power of feature interaction detection. The proposed method is based on the use of a language called Use-Modify which models Web services at a high abstraction level. A Use-Modify model of a Web service provides information such as "who uses what", "who modifies what", and characterizes each operation of use and modifying by "always", "sometimes", "never" and "maybe". "Use-Modify" also indicates, for each use and modifies, whether there are conditions which may specified or unspecified. We study the computational complexity of our feature interaction detection method and demonstrate its applicability in several examples.

Keywords: Composing web services; Feature interaction detection; High abstraction level; Use-Modify relation; Use-Modify model.

1. Introduction

When existing Web Services (WS) are composed to create new WSs, the latter can contain undesired behaviors, which are called feature interactions (FI). Here is an example of FI in WS: we consider a supplier to which orders can be sent. When his stock is empty, a supplier forwards
any incoming order to another supplier. Consider two WSs Supplier ${ }_{1}$ and Supplier $_{2}$, an assuming that an order is sent to Supplier ${ }_{1}$ and those both Suppliers have their stocks empty. We may have a following situation: Supplier $_{1}$ forwards an order to Supplier ${ }_{2}$ which in turn the forwarding of the order to Supplier $_{1}$. The FI manifests itself by a blocking situation where each supplier is waiting the answer of the other.

FIs have been intensively studied in telecommunication services (or Telecom-services) ${ }^{[1-9]}$, and ever since more recently in WSs. Many methods have been developed to detect FIs, some of them are rigorous and have a high power of FI detection. But the latter suffer from state space of explosion, such as those applying model-checking techniques. The approach we are proposing to detect FIs in WSs targets, the reduction of such a state space explosion problem while trying to keep an acceptable power of FI detection. We model the behaviors of WSs by socalled Use-Modify language (or UM-language) which is a high abstraction level formalism whose basic principle is to specify "who uses what" and "who modifies what". UM-language permits also to characterize each "use" and "modify" by "always", "sometimes", "never" or "maybe". Moreover, UM-language may also indicate conditions to "use" or "modify".

Our Use-Modify approach is slightly inspired by many workers ${ }^{[10,11]}$. Our contribution is that while ${ }^{[10-11]}$ are mainly based on intuitive ideas, we adopt a much more rigorous approach where all our ideas are studied thoroughly and formally. A much shorter version of our paper is published in $2012^{[12]}$.

The structure of the paper and its contributions compared to Khoumsi, et al., ${ }^{[12]}$ are as follows:

- In Section 2, we explain some fundamental differences between composing WSs and composing Telecom-services.
- Section 3 presents some related work on modeling and composing WSs and detecting their FIs.
- In Section 4, we propose a Use-Modify language (or UMlanguage) to model WSs at a high abstraction level. A UM-model is a set of UM-relations like "L uses R" or "L modifies R", where L and R represent WSs, functionalities of WSs or variables of WSs, and each "use" and "modify" is characterized by "always", "sometimes", "never" or "maybe". Here are specific contributions in comparison with those of Khoumsi, et al., ${ }^{[12]}$.
- the semantics of "use" and "modify" and their characterizations are defined more clearly and rigorously (Sect. 4.2);
- The identified Formal conditions to characterize UM-relations as well-formed (Sect. 4.3);
- Formal conditions can be associated with UM-relations to restrict their general semantics (Sect. 4.5).
- Section 5 proposes a number of logical rules that permit to enrich a UM-model in function of deriving new UM-relations from given UM-relations. Here are specific contributions in comparison with ${ }^{[12]}$:
- We first define fundamental rules which do not refer to UMrelations (Section 5.1); they are rather based on general logical statements; these rules are absent in Khoumsi, et al., ${ }^{[12]}$.
- Three categories of UM-rules (i.e. applicable rules of UMrelations) are deduced from the fundamental rules. (Section 5.25.4), instead of being partially defined without justification and categorization (as in Khoumsi, et al., ${ }^{[12]}$).
- Soundness and completeness of the fundamental rules and the UM-rules are rigorously studied and discussed (Sections 5.5-5.6).
- Utility of characterizing "use" and "modify" by "maybe" is explained (Section 5.6.3).
- In Section 6, we are going to present a Use-Modify-based \& method of detecting FIs in WSs. Contrary to that of Khoumsi, et al., ${ }^{[12]}$:
- The method is specified as: Three-steps first algorithm where we indicate clearly what is done automatically and what is done by the designer.
- Second (which is not an easily understandable ${ }^{[12]}$) is illustrated by an abstract example throughout Sect. 6.2.
- We study the computational complexity of our FI detection method.
- Section 7 to demonstrates the applicability of our method for detecting all of the FIs of the benchmark ${ }^{[13]}$ is a part of the $\mathrm{FI}^{[14]}$.
- In Section 8, we demonstrate that our method can be used to detect several FIs, and we never only consider the WS composition, but also a Telecom-service composition and a mixed composition of WS including to the Telecom-service ${ }^{[15]}$.
- Section 9 conclusions and by recapitulating of the contributions and proposing are some of the future work.
- Section 10 contains the proofs of some propositions; where Khoumsi, et al., ${ }^{[12]}$ not all of the propositions.

2. Web Service Composition Versus Telecommunication Service Composition

Let us show that composing WSs is different from composing Telecom-services.

1. Telecom-services can generally be abstracted by a few parameters. For example ${ }^{[16]}$, each service is abstracted by a triggering party, and origin and destination parties. The services ${ }^{[17]}$, are abstracted by some processing points that correspond to the main steps in a phone call. On the other hand contrary, WSs cannot be so simply abstracted, because a WS can be provided any imaginable software system providing a service through the Web.
2. Composing two Telecom-services generally means running them in parallel. Most of the FI studies for Telecom-services are based on this simple composition approach. On the contrary, WS composition means designing a new WS by composing existing WSs, based on the principle of software reusability. Hence, WS composition requires a design phase.

We deduce that WS composition may be much more complex than composing Telecom-services, so that cannot be automated in general. To address the complexity of WS composition, in several models, those have been developed, such as orchestration and choreography.

Now, let us draw the attention of the reader to an important difference between Telecom-services and WSs in FI detection. The presence of FIs between the two composed Telecom-services depend generally unique on those composed services, because the composition consists simply in running the services in parallel. On the contrary, the presence of FIs in WSs depends generally on the way of the WSs have been composed, because there are many ways to compose WSs.

3. Related Work on Modeling and Composing WSs and Detecting Their FIs

An important contribution ${ }^{[13,14]}$ is to raise the interest of researchers to the problem of WS composition and FI detection ${ }^{[13]}$. That presents a case of study which can be used as a benchmark to assess FI detection methods. Another contribution in raising an interest can be found in ${ }^{[15]}$, which shows that FIs of Telecom-Services are different from FIs in WSs.

Let the term on-line (resp. off-line) qualify the methods which are applicable during in the execution (resp. design). On-line WS composition and FI detection methods are studied for example in ${ }^{[18-20]}$. ${ }^{[18]}$ presents an on-line of FI detection method inspired from the Situation of Calculus. ${ }^{[19]}$ presents an on-the-fly approach to compose WSs. ${ }^{[20]}$ identifiy some challenges and opportunities in on-line FI detection and resolution.

Much more work has been done in off-line WS composition and FI management, e.g. in ${ }^{[21-25]}$. ${ }^{[21]}$ proposes an off-line FI detection method using Label Transitions Systems (LTS). ${ }^{[22]}$ proposes a method based on Petri nets that detects one type of FIs: race conditions. ${ }^{[23]}$ uses Petri nets to describe WSs and presents simple examples for merging WS descriptions. ${ }^{[24]}$ presents an FI detection method using the model-checker UPPAAL; WSs are described in WS-BPEL which is translated into timed automata. ${ }^{[25]}$ presents an FI detection method that uses the model-checker SPIN ${ }^{[26]}$; WSs are described in BPEL4WS ${ }^{[27]}$ which is translated into Promela.

Some work on user-interfacing and software-tooling for WS composition can be found in ${ }^{\left[28,{ }^{29]}\right]}{ }^{[28]}$ proposes an environment using Mashup for WS composition, and ${ }^{[29]}$ presents an integrated development environment for WS composition. FI detection is not studied in ${ }^{[28,29]}$.
${ }^{[30,31]}$ propose an extension of the business model of ${ }^{[32]}$ to support WS composition. The authors of ${ }^{[30,31]}$ go further in ${ }^{[33]}$ by studying how WSs can be categorized and assembled. FI detection is not studied in ${ }^{[30,31,33]}$.
${ }^{[34,35]}$ contain a rigorous study of WS composition, where theoretical, software-tooling and user-interfacing aspects are considered. The CRESS formalism is used which can be automatically translated into BPEL and LOTOS.

4. Use-Modify Language to Model WSs

In the references of Section 3 that study FI detection, the developed FI detection methods may suffer from state space explosion, because they are based on formalisms specifying WS behaviors exhaustively. The approach we adopt targets to avoid state space explosion while keeping an acceptable power of FI detection. For that purpose, we develop a socalled Use-Modify language (or UM-language) to model WSs at a high abstraction level, whose principle is to specify "who uses what" and "who modifies what". Such an omission of details is motivated by the desire to avoid state space explosion during FI detection. With UseModify, WSs are specified at two levels: their interfaces are specified like objects in object-oriented analysis (OOA); and their behaviors are specified by what called is Use-Modify relations (UM-relations) in the form of "L uses of Y" or "L modifies to R". L and R correspond to WSs, functionalities of WSs or variables of WSs, and either "use" and "modification" are characterized by "always", "sometimes", "never" or "maybe". A set of UM-relations modeling the behavior of the WS is called its behavior model, or its UM-model to emphasize the use of UMrelations. The UM-model describes a WS logically, in the sense that it specifies how a WS behaves but it does not necessarily to correspond to its implementation. The UM-model is targeted uniquely to be manipulated by our proposed FI detection method which will be presented in Section 6. While designing (and pre deploying) a WS, a UM-model of such a WS must be constructed and analyzed to determine whether the WS is FI prone. Therefore, our method is off-line.

4.1. Interface Model Based on Object-Oriented Analysis

The interface of a WS is modeled as a class skeleton in OOA, and the interface of each executable instance of WS is modeled as an object skeleton of a class. By skeleton, we mean that the classes and objects are specified by attributes and methods signatures. A method signature specifies a function by its name, its input and/or output parameters and its returned result (if any), and without a body. Object skeleton corresponds to interface in Java. Hence, the behavior is not specified. For the sake of brevity, we will omit the terms skeleton and signature in class skeleton, object skeleton, and method signature. There exist two types of attributes: basic attributes and complex attributes. Basic attributes are
variables of primitive types, like int, float, double, boolean. Complex attributes are objects. For the sake of clarity, methods, basic attributes and complex attributes are named differently as follows:

- Basic attributes (or primitive variables): they are named in italic with the first letter non capitalized. For example, risk, rate, and amount.
- Complex attributes (or objects): they are named in italic with the first letter capitalized. For example, Assessor, Approver, Lender, Supplier.
- Methods: they are named in italic with the first letter non capitalized, and they terminate by ().For example, quote(), approve() and assess().
As in OOA, attribute a and a method $m()$ of an object O are referred to as $O . a$ and $O . m()$, respectively. The object name O can be omitted when there is no ambiguity or when it is irrelevant. We will use the notions of feature and WS as follows:
- Feature: it is a basic WS which is not composed of other WSs. A feature is modeled as an object whose all attributes are basic. When several similar features are used, the latter can be modeled as objects of the same class. A class is named with all letters capitalized, for example, SUPPLIER.
- WS: it is a complex WS created by composing features and/or WSs. Like features, WSs can be modeled by objects and classes. The fact that a WS is composed of several objects (WSs and/or features) implies that it has a complex attributes.
Let us consider some examples of features and WSs taken from ${ }^{[35]}$ and give an idea of how they can be modeled as objects. We do not present them in detail, we just indicate one or two attributes and methods for each feature or WS.

Example 1: The feature Approver has a method approve() and two basic attributes amount and rate. approve() evaluates a loan of a given amount and refuses or approves it. A rate is selected if the loan is approved.

Example 2: The feature Assessor has a method assess() and three basic attributes amount, risk and rate. assess() evaluates the risk of a loan of a given amount. If risk is low, an acceptation response is returned with a proposed loan rate, otherwise a refusal is returned.

Example 3: The WS Lender is composed of the two features Approver and Assessor. Lender has two attributes that correspond to Approver and Assessor. Lender has also a method quote() and a basic attribute amount. The method quote() approves or assesses a loan of a given amount in the following way: quote() invokes the method approve() of Approver if amount ≥ 10000, or the method assess() of Assessor if amount <10000. quote() also invokes approve() if assess() returns a refusal.

We have shown how WSs have their interfaces (and not their behaviors) modeled as classes and objects. Note that these interfaces can be visualized as a subset of UML class diagrams where the unique associations are compositions and aggregations, which may seem too restrictive compared to UML class diagrams. This restriction is justified by the fact that our interfaces will be used uniquely to detect FIs at a high abstraction level. These interfaces do not reflect necessarily the implementation structures of WSs, while UML class diagrams can be used to model implementations, and hence may need to be closely associated to implementations structures.

Interfaces do not give any information on how WSs behave. In the above three examples, the behaviors were indicated for information, they are not described in the objects. In the remainder of Section 4, we show how WSs have their behaviors modeled at a high abstraction level by the Use-Modify formalism.

4.2. Introduction to the Use-Modify Formalism

A method is said active if its execution modifies (sometimes or always) the value of some attribute (of any object). An object is said active if it contains an active method or a complex attribute which is an active object. A basic attribute cannot be active. A method or object is said passive if it is not active. Intuitively, an active object is an object that permits to modify some attribute (of any object). Let active access to an attribute mean an access that modifies the attribute. Hence, we categorize accesses in two actions: "use" and "modify" which will be characterized by various "intensities". Let us first consider the "use" of the action:

- "use!" means "has always access to".
- "use?" means "has sometimes access to"; by sometimes, we mean under some specified or unspecified conditions which happen to be true (i.e. the conditions cannot be always false).
- "use\%" means "has never access to".
- "use\#" means "has maybe access to", i.e., we do not know if there is an access.

In the same way, the action "modify" is used with various "intensities" as "modify!", "modify?", "modify\%" and "modify\#". The difference between "use" and "modify" is that "modify" corresponds to an active access, while "use" corresponds to an access which may be passive or active.

To clarify particularly the semantics of "always", "sometimes", "maybe" and "never", we detail below the different types of so-called Use-Modify relations (or UM-relations):
"L use! R " means that R is accessed each time and L is applied.
"L use? R" means that R is accessed in some (known or unknown) situation(s) where L is applied. Note that this case may include the following two cases:

- L has access to R in some situations not in all situations;
- L has access to R in all situations.
"L use\% R" means that L never uses R.
"L use\# R" means that we suspect that L uses R, but we are not certain.
"L modify! R" strengthens "L use! R" by specifying that the access is active, i.e. R is modified each time L is applied.
"L modify? R" strengthens "L use? R" by specifying that the access is active, i.e. R is modified in some (known or unknown) situation(s) where L is applied. Note that this case may include the following two cases:
- L modifies R in some situations not in all situations;
- L modifies R in all situations.
"L modify\% R" means that L never modifies R .
"L modify\# R" means that we suspect that L modifies R , but we are not certain.

Note that use\# is less precise than use!, use? and use\%, and modify\# is less precise (we also say: weaker) than modify!, modify! and modify\%. use\# and modify\# have been defined and we will show that if they can be deduced by some rules. Typically, a UM-relation "L use\# R" is irrelevant (hence of that should be removed) so if we have one of its stronger UM-
relations "L use! R", "L use? R" or "L use\% R". In the same way, a UMrelation "L modify\# R" is irrelevant (so that should be removed) if we have one of its stronger UM-relations "L modify! R", "L modify? R" or "L modify\% R". We will return to this aspect in Section 5.6.3.

In the sequel, "!", "?", "\%" and "\#" are not written in some contexts where they are irrelevant. In this case, we write "use" to mean "use!", "use?", "use\%" or "use\#", and we write "modify" to mean "modify!" or "modify?", "modify\%" or "modify\#".

4.3. Well-formed UM-relations "L use R " and "L modify R "

In this subsection, we still clarify more the semantic of UM-relations "L use R" and "L modify R" and we present restrictions on R and L that are necessary and sufficient to characterize a UM-relation as wellformed.

4.3.1. UM-relation "L use R"

In a UM-relation "L use R":

- R can be a method $m()$:"L use $m()$ " means that L calls $m()$;
-R can be a basic attribute x : "L use x " means that L reads or changes the value of x.
- R can be a complex attribute, i.e. R is an object which may have its own (basic and complex) attributes and/or methods:
"L use R" means that L uses one or more of the attributes or methods of R.

In the above three cases, we have the actions "calls", "reads or changes" and "uses", respectively. We refer to any of these actions by "action on R". The 3 cases are generic since we have "use" without !, ?, \# or $\%$. Let us see what we obtain if we replace the generic "use" by use!, use?, use\# or use? :

- With use! : we have to characterize the action on R by "always",
- With use? : we have to characterize the action on R by "sometimes",
- With use\#: we have to characterize the action on R by "maybe",
- With use\%: we have to characterize the action on R by "never".

Let us now see the conditions on L in a UM-relation "L use R":

- L can be a method $p()$: the action on R is realized by the execution of $p()$.
- L can be a complex attribute: there are two possible situations:
- L has a method that realizes the action on R;
- L has a complex attribute that realizes the action on R .
- L cannot be a basic attribute: indeed, a basic attribute can uniquely be read and modified.

4.3.2. UM-relation "L modify R "

A difference with " L use R " is that in " L modify R ", R cannot be a method, because it is a nonsense to modify a method. The latter can uniquely be called (i.e. used). Hence, in a UM-relation "L modify R":

- R cannot be a method $m()$: a method can only be used (by calling it);
-R can be a basic attribute x : "L modify x " means that L changes the value of x.
- R can be a complex attribute, i.e. R is an object which may have its own (basic and complex) attributes and/or methods:
"L modify R" means that L modifies one or more of the attributes or methods of R.

In the above two "can be" cases, we have the actions "changes" and "modifies", respectively. We refer to any of these actions by "active action on R". The 2 cases are generic since we have "modify" without !, ?, \# or \%. Let us see what we obtain if we replace the generic "modify" by modify!, modify?, modify\# or modify? :

- With modify! : we have to characterize the active action on R by "always",
- With modify? : we have to characterize the active action on R by "sometimes",
- With modify\#: we have to characterize the active action on R by "maybe",
- With modify\%: we have to characterize the active action on R by "never".

The conditions on L in a UM-relation "L modify R " are the same conditions identified for "L use R" in Subsection 4.3.1.

Definition 4.1 (Well-formed UM-relation) A UM-relation "L use R" (resp. "L modify R") is said well-formed if it respects the conditions of Subsection 4.3.1 (resp. 4.3.2).

4.4. Examples of UM-models

Example 4: Here are some UM-relations that can be derived from the literal descriptions in Examples 1, 2, 3 of Section 4.1:
Approver (of example 1):
M1: Approver.approve() modify! Approve.amount // approve()
// sets amount by a value received as input argument
M2: Approver.approve() modify? Approver.rate //approve() computes //rate if loan accepted
Assessor (of example 2):
M3: Assessor.assess() modify! Assessor.amount // assess() sets amount // by a value received as input argument
M4: Assessor.assess() modify! Assessor.risk // assess() computes the //risk
M5: Assessor.assess() modify? Assessor.rate //assess() computes the //rate if the risk is low
Lender (of example 3): Since Lender is composed of Approver and Assessor, its model contains the UM-relations M1-M5. Additional UMrelations are necessary to model the coordination of Approver and Assessor by Lender. Here are examples of such additional UMrelations:
M6: Lender use! Lender.quote() // Lender starts by the execution of //its method quote()
M7: Lender.quote() modify! Lender.amount // quote() sets amount by a //value received as input argument
M8: Lender.quote() use? Approver.approve() // quote() calls approve() // if amount ≥ 10000 or if assess() refuses the loan
M9: Lender.quote() use? Assessor.assess() // quote() calls assess() if // amount <10000
Example 5: Let us use the benchmark of ${ }^{[13]}$ to present other examples of use? and modify?. Examples 5, 6 and 7 of this benchmark are related to accessing the user profile. We consider a WS Supplier that needs to have access to user profiles. We assume that each profile contains two parts: a confidential part and a public part. The two parts can be read and modified by the profile of the owner. The confidential part can also be read by some trusted entities, while the public part can be read by anyone.

All what concerns a user is represented as an object User with an attribute profile. The latter represents the user profile which is itself an
object with two attributes conf and pub, for the confidential and public parts respectively. Here are some UM-relations
where Supplier is a trusted or untrusted supplier.
N1: Supplier use? User.profile // Supplier can read profile with the // following restriction: Supplier can read the confidential //part only if he is trusted.
N2: Supplier modify\% User.profile // Supplier cannot modify //profile
N3: Supplier use? User.profile.conf // Supplier can read conf //only if he is trusted
N4: Supplier modify\% User.profile.conf // Supplier cannot modify //conf
N5: Supplier modify\% User.profile.pub // Supplier cannot modify // pub

4.5. Conditions Associated to UM-Relations

In a UM-relation "L x R", we may specify conditions as follows:
L x R : [condition1, condition2, ...]
Consider for example a WS Supplier to which an order can be sent, e.g., by calling its method order()). Supplier can itself call the $\operatorname{order}()$ method of another supplier of the same class SUPPLIER. This is specified by the UM-relation "Supplier.order() use? SUPPLIER.order()". Assuming a supplier does not call its own order() method, we associate to this UM-relation a condition stating that SUPPLIER does not comprise Supplier. Formally:

Supplier.order() use? SUPPLIER.order ()$:[S U P P L I E R \neq$ Supplier].

This condition will be reconsidered in the example of Section 7.1.
Conditions can also be useful in a UM-relation with "use?" or "modify?" to justify why we have not "use!" or "modify!" in the considered UM-relation. Consider for example a supplier who accesses some information in the profile of a customer only if he is authorized. This can be modeled as follows:

Supplier use? profile : [Supplier.authorized = true].

This kind of condition will be used to define a FI pattern, namely Pattern 4 of Section 6.3. It will be illustrated by an example in Section 7.5.

5. Logical Rules of Use-Modify Language

To make UM-modeling applicable in a rigorous way, we provide in this section a set of logical rules that can be used in the phase of construction of UM-relations modeling a WS or several interacting WSs. We will consider three types of rules:

- implication UM-rules: they permit to deduce a new UM-relation from an existing UM-relation;
- fusion UM-rules: they permit to deduce a new UM-relation from two existing UM-relations;
- contradiction UM-rules: they permit to identify incompatible UMrelations.

Let us first give in Section 5.1 fundamental rules from which the three types of UM-rules will be synthesized in Sections 5.2-5.4. By fundamental, we mean that the rules of Section 5.1 are based on general logical statements; they do not refer directly to UM-relations. Sections 5.5-5.6 are related to soundness and completeness of the fundamental and UM-rules. Section 5.7 illustrates the use of UM-rules.

5.1. Fundamental rules

The objective of this subsection is to identify a set of fundamental rules that specify:

- links between "use" and "modify" $\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right)$;
- links between "always", "sometimes" and "never $\left(\mathrm{R}_{3}-\mathrm{R}_{5}\right)$;
- How "use" can be combined with other actions by transitivity ($\mathrm{R}_{6}-$ R9).
Note that these rules are not specified formally because their objective is to present fundamental principles which will justify the formal rules of Sections 5.2-5.4.

5.1.1. Links between "use" and "modify"

The action "use" refers to any active or passive access. That is, "L uses R" means that L has an access to R which may or may not modify the state of R. The action "modify" is an active "use", i.e. "L modifies R"
means that L has a particular use of R that modifies its state. Hence, L can modify R only by using it, or in other terms, L cannot modify R if L does not use R. therefore we have the following two rules R_{1} and R_{2} which are in fact equivalent:
\mathbf{R}_{1} : "L modifies R" implies "L uses R";
\mathbf{R}_{2} : "L does not use R" implies "L does not modify R".

5.1.2. Links between "always", "sometimes" and "never"

In Section 4.2, we have explained our exact semantics of "always", "sometimes", "never" and "maybe", from which the following rules R_{3} R_{5} can be easily understood. Note that "maybe" does not intervene in these rules; this is because our semantics of "maybe" is too coarse and corresponds to a "don't know" situation.
\mathbf{R}_{3} : "L always makes an action A" implies "L sometimes makes A";
$\mathbf{R}_{\mathbf{4}}$: "L never makes an action A" and "L sometimes makes A" are contradictory;
\mathbf{R}_{5} : "L never makes an action A " and "L always makes A" are contradictory.

5.1.3. Combining "use" with other actions by transitivity

Consider actors U, L and R , such that U always applies an action A to R. Our semantics of "always" (Section 4.2) means that each time U is used, it inevitably applies the action A to R. Consider the following two cases:

- Assume that L sometimes uses U , i.e. there is at least one case where L uses U . Hence, we deduce logically that there is at least one case where L applies the action A to R , i.e. L sometimes applies the action A to R. This leads to rule R_{6} below.
- Assume that L always uses U, i.e. each time L is used, it uses U. Hence, we deduce logically that each time L is used it applies the action A to R, i.e., L always applies the action A to R. This leads to rule R_{7} below.
Assuming that U always applies the action A to R :
\mathbf{R}_{6} : "L sometimes uses U" implies "L sometimes applies A to R";
\mathbf{R}_{7} : "L always uses U" implies "L always applies A to R".

Consider now actors U, R and L , such that U sometimes applies an action A to R. Our semantics of "sometimes" (Section 4.2) means that there is at least one case where U applies the action A to R. Consider the following two cases:

- Assume that L sometimes uses U , i.e. there is at least one case where L uses U . We cannot deduce anything about the application of A by L , for the following reason: the cases where U applies A to R are not necessarily the cases where L uses U. Hence, we can only deduce that L maybe applies action A to R , which corresponds to rules R_{8}.
- Assume that L always uses U , i.e. each time L is used, L uses U . We cannot deduce anything about the application of A by L , for the following reason: the cases where U applies A to R are not necessarily the cases where L is used. Hence, we can only deduce that L maybe applies action A to R , which corresponds to rules R .

Assuming that U sometimes applies the action A to R :
$\mathbf{R}_{\mathbf{8}}$: "L sometimes uses U" implies "L maybe applies A to R";
$\mathbf{R}_{\mathbf{9}}$: "L always uses U" implies "L maybe applies A to R".

5.1.4. Recapitulation of the fundamental rules $R_{l}-R_{9}$

\mathbf{R}_{1} : "L modifies R" implies "L uses R".
\mathbf{R}_{2} : "L does not use R" implies "L does not modify R ".
\mathbf{R}_{3} : "L always makes an action A" implies "L sometimes makes A".
\mathbf{R}_{4} : "L never makes an action A" contradicts "L sometimes makes A".
\mathbf{R}_{5} : "L never makes an action A" contradicts "L always makes A".
Assuming that U always applies an action A to R :
\mathbf{R}_{6} : "L sometimes uses U" implies "L sometimes applies A to R";
\mathbf{R}_{7} : "L always uses U" implies "L always applies A to R".
Assuming that U sometimes applies an action A to R :
$\mathbf{R}_{\mathbf{8}}$: "L sometimes uses U" implies "L maybe applies A to R";
\mathbf{R}_{9} : "L always uses U" implies "L maybe applies A to R".
From $\mathrm{R}_{1}-\mathrm{R}_{9}$, we define in Sections 5.2-5.4 three types of specific UMrules (i.e. rules on UM-relations): implication UM-rules, fusion UMrules, and contradiction UM-rules. These UM-rules are identified in the form I_{n}, F_{n} and C_{n}, respectively, and also in a mnemonic form $\mathbf{R}[\ldots]$ that may help to guess the statement of each rule.

5.2. Implication UM-Rules

In this subsection, we present implication UM-rules, i.e. we identify cases where a UM-relation implies another UM-relation. The implication UM-rules $\mathrm{I}_{1}-\mathrm{I}_{5}$ below are deduced from Rules $\mathrm{R}_{1}-\mathrm{R}_{3}$ of Section 5.1. More precisely:

- I_{1} and I_{2} are the translations of R_{1} into UM-rules by characterizing the actions by "always" and "sometimes", respectively.
$-\mathrm{I}_{3}$ and I_{4} are the translations of R_{3} into UM-rules by using the actions "modify" and "use", respectively.
- I_{5} is the translation of R_{2} into UM-rule.

The condition associated to I_{5} is required to guarantee that the derived "L modify\%" is well-formed assuming that "L use $\%$ " is well-formed. This condition is necessary because the "well-formed" constraints of "L use\% R" (in Subsection 4.3.1) are weaker than the "well-formed" constraints of "L modify\%" (in Subsection 4.3.2). The UM-rules $\mathrm{I}_{3}-\mathrm{I}_{4}$ do not require conditions because the "well-formed" constraints of their left members are the same as the "well-formed" constraints of their right members. The UM-rules $I_{1}-\mathrm{I}_{2}$ do not require conditions because the "well-formed" constraints of their left members are stronger than the "well-formed" constraints of their right members.

$\mathbf{I}_{\mathbf{1}}: \mathbf{R}[\mathbf{m}!=>\mathbf{u}!]:$	"L modify! R"	\Rightarrow	"L use! R"
$\mathbf{I}_{\mathbf{2}}: \mathbf{R}[\mathbf{m} ?=>\mathbf{u} ?]:$	"L modify? R"	\Rightarrow	"L use? R"
$\mathbf{I}_{\mathbf{3}}: \mathbf{R}[\mathbf{m}!=>\mathbf{m}$?]:	"L modify! R"	\Rightarrow	"L modify? R"
$\mathbf{I}_{\mathbf{4}}: \mathbf{R}[\mathbf{u}!=>\mathbf{u}$?]:	"L use! R"	\Rightarrow	"L use? R"

Assuming that the conditions of Section 4.3.2 are respected by L and R : $\mathbf{I}_{5}: \mathbf{R}[\mathbf{u} \%=>\mathbf{m} \%]$: "L use\% R" $\quad>\quad$ "L modify\% R" if the condition of

5.3. Fusion UM-Rules

In this subsection, we present fusion UM-rules, i.e. we identify cases where two UM-relations derive another UM-relation. The fusion rules $F_{1}-F_{4}$ below are deduced from Rules $R_{6}-R_{7}$ of Section 5.1.3 as follows:

- $\quad F_{1}$ is the translation of R_{7} into UM-rule by taking action A as "use R",
- $\quad F_{2}$ is the translation of R_{6} into UM-rule by taking action A as "use R",
- F_{3} is the translation of R_{7} into UM-rule by taking action A as "modify R".
- F_{4} is the translation of R_{6} into UM-rule by taking action A as "modify R",
The UM-rules $\mathrm{F}_{5}-\mathrm{F}_{8}$ below are deduced by combining $\mathrm{I}_{1}-\mathrm{I}_{2}$ and $\mathrm{F}_{1}-\mathrm{F}_{4}$ as follows:
- F_{5} is deduced from I_{1} and F_{1},
- F_{6} is deduced from I_{2} and F_{2},
- F_{7} is deduced from I_{1} and F_{3},
- F_{8} is deduced from I_{2} and F_{4}.
\mathbf{F}_{1} : R[u!u!=>u!]:"L use! U" and "U use! R" =>
"L use! R"
$\mathbf{F}_{2}: \mathbf{R}[\mathbf{u}$? u!=>u?]:"L use? U" and "U use! R" =>
"L use? R"
$\mathbf{F}_{3}: \mathbf{R}[\mathbf{u}!\mathbf{m}$!=>m!]: "L use! U" and "U modify! R" =>
"L modify! R"
$\mathbf{F}_{\mathbf{4}}: \mathbf{R}[\mathbf{u}$? m !=>m?]: "L use? U" and "U modify! R" =>
"L modify? R"
\mathbf{F}_{5} : R[m!u!=>u!]: "L modify! U" and "U use! R" =>
"L use! R"
$\mathbf{F}_{\mathbf{6}}: \mathbf{R}[\mathbf{m}$? \mathbf{u} :=> \mathbf{u} ?]: "L modify? U" and "U use! R" =>
"L use? R"
\mathbf{F}_{7} : $\mathbf{R}[\mathbf{m}!\mathbf{m}$!=>m!]: "L modify! U" and "U modify! R" =>
"L modify! R"
$\mathbf{F}_{8}: \mathbf{R}[\mathbf{m}$? \mathbf{m} !=>m?]: "L modify? U" and "U modify! R" =>
"L modify? R"

The UM-rules $\mathrm{F}_{9}-\mathrm{F}_{12}$ below are deduced from $\mathrm{R}_{8}-\mathrm{R}_{9}$ of Section 5.1.3 as follows:

- $\quad \mathrm{F}_{9}$ is the translation of R_{9} into UM-rule by taking action A as "use R",
- F_{10} is the translation of R_{8} into UM-rule by taking action A as "use R",
- F_{11} is the translation of R_{9} into UM-rule by taking action A as "modify R",
- F_{12} is the translation of R_{8} into UM-rule by taking action A as "modify R".

Note that F_{9} and F_{11} can also be deduced as follows:

- F_{9} is deduced from I_{4} and F_{10},
- F_{11} is deduced from I_{4} and F_{12}.

We have also the UM-rules $\mathrm{F}_{13}-\mathrm{F}_{16}$ which can be deduced as follows:

- F_{13} is deduced from I_{1} and F_{9},
- F_{14} is deduced from I_{2} and F_{10},
- F_{15} is deduced from I_{1} and F_{11},
- F_{16} is deduced from I_{2} and F_{12}.

Note that F_{13} and F_{15} can also be deduced as follows:

- F_{13} is deduced from I_{3} and F_{14},
- F_{15} is deduced from I_{3} and F_{16}.
\mathbf{F}_{9} : R[u!u?=>u\#]: "L use! U" and "U use? R" =>
"L use\# R"
$\mathbf{F}_{10}: \mathbf{R}[\mathbf{u}$? \mathbf{u} ?=> $\mathbf{u} \#]$: "L use? U" and "U use? R" $=>$
"L use\# R"
\mathbf{F}_{11} : R[u!m?=>m\#]:"L use! U" and "U modify? R" =>
"L modify\# R"
$\mathbf{F}_{12}: \mathbf{R}[\mathbf{u}$? \mathbf{m} ? =>m\#]: "L use? U" and "U modify? R" =>
"L modify\# R"
$\mathbf{F}_{13}: \mathbf{R}[\mathbf{m}!\mathbf{u}$? => $\mathbf{u} \#]$: "L modify! U" and "U use? R" =>
"L use\# R"
\mathbf{F}_{14} : R[m?u?=>u\#]:"L modify? U" and "U use? R" =>
"L use\# R"
\mathbf{F}_{15} : R[m!m?=>m\#]: "L modify! U" and "U modify? R" =>
"L modify\# R"
\mathbf{F}_{16} : R[m?m?=>m\#]: "L modify? U" and "U modify? R" =>
"L modify\# R"

5.4. Contradiction UM-Rules

In this subsection, we present contradiction UM-rules, i.e. we identify pairs of UM-relations which are incompatible (or mutually exclusive) with each other. A UM-model containing pairs of incompatible UMrelations is inconsistent and hence may be a symptom of FI. The four contradiction UM-rules $\mathrm{C}_{1}-\mathrm{C}_{4}$ below are deduced from Rule $\mathrm{R}_{4}-\mathrm{R}_{5}$ of Section 5.1.2 as follows:

- C_{1} is the translation of R_{4} into UM-rule, by taking action A as "modify R",
- C_{2} is the translation of R_{4} into UM-rule, by taking action A as "use R",
- C_{3} is the translation of R_{5} into UM-rule, by taking action A as "modify R",
- C_{4} is the translation of R_{5} into UM-rule, by taking action A as "use R".
Note that C_{3} and C_{4} can also be deduced as follows:
- C_{3} is implied from I_{3} and C_{1},
- C_{4} is implied from I_{4} and C_{2}.

We have also the UM-rules $\mathrm{C}_{5}-\mathrm{C}_{6}$ which can be deduced as follows:

- C_{5} is implied from I_{5} and C_{1} and from I_{2} and C_{2},
- C_{6} is implied from I_{5} and C_{3}, I_{1} and C_{4}, also from I_{3} and C_{5}.

$$
\begin{aligned}
& \mathbf{C}_{\mathbf{1}}: \mathbf{R}[\mathbf{m} \mathbf{~} \neq \mathbf{m} \%] \text { : "L modify? R" and "L modify\% R" => } \\
& \text { Incompatibility } \\
& \mathbf{C}_{\mathbf{1}}: \mathbf{R}[\mathbf{m} \mathbf{?} \neq \mathbf{m} \%] \text { : "L modify? R" and "L modify\% R" => } \\
& \text { Incompatibility } \\
& \mathbf{C}_{2}: \mathbf{R}[\mathbf{u} \boldsymbol{\mathbf { }} \neq \mathbf{u} \%] \text { : "L use? R" and "L use\% R" } \Rightarrow \\
& \text { Incompatibility } \\
& \mathbf{C}_{\mathbf{3}}: \mathbf{R}[\mathbf{m}!\neq \mathbf{m} \%] \text { : "L modify! } \mathrm{R} \text { " and "L modify\% R" }=> \\
& \text { Incompatibility } \\
& \mathbf{C}_{\mathbf{4}}: \mathbf{R}[\mathbf{u}!\neq \mathbf{u} \%] \text { : "L use! } \mathrm{R} " \text { and "L use\% R" }=> \\
& \text { Incompatibility } \\
& \mathbf{C}_{5}: \mathbf{R}[\mathbf{m} \boldsymbol{?} \neq \mathbf{u} \% \mathbf{0} \text { : "L modify? R" and "L use\% R" } \Rightarrow \\
& \text { Incompatibility } \\
& \mathbf{C}_{\mathbf{6}}: \mathbf{R}[\mathbf{m}!\neq \mathbf{u} \%] \text { : "L modify! R" and "L use\% R" } \Rightarrow \\
& \text { Incompatibility }
\end{aligned}
$$

5.5. Soundness and Completeness Results

Note that $\mathrm{R}_{1}-\mathrm{R}_{3}, \mathrm{R}_{6}-\mathrm{R}_{9}, \mathrm{I}_{1}-\mathrm{I}_{5}$ and $\mathrm{F}_{1}-\mathrm{F}_{16}$ derive new UM-relations from existing UM-relations, while $\mathrm{R}_{4}-\mathrm{R}_{5}$ and $\mathrm{C}_{1}-\mathrm{C}_{6}$ detect incompatibilities between UM-relations. We will use the symbol wrt for "with regard to". We will also use "logically" to mean "by using reasoning based on $1^{s t}$ order logic.

Proposition 5.1 (Preservation of "well-formed") Each of the UMrules $I_{1}-I_{5}$ and $F_{1}-F_{16}$ derives a well-formed UM-relation when its left hand side member (one or two UM-relations) is well-formed. (Wellformed is defined in Section 4.3.).

Definition 5.1 (Soundness): Consider a set R of rules applicable to UM-relations. R is said sound (implicitly wrt $1^{\text {st }}$-order logic), if for every set K of UM-relations, all UM-relations and incompatibilities between UM-relations that can be deduced by R from K can also be deduced logically. Intuitively, soundness of R is that R is a subset of the $1^{\text {st }}$-order logic.

Definition 5.2 (Completeness wrt rules): Consider two sets F and R of rules applicable to UM-relations. R is said complete wrt F , if for every set K of UM-relations, all UM-relations and incompatibilities between UMrelations that can be deduced by F from K can also be deduced by R . Intuitively, completeness of R wrt F is that F is a subset of R .

Definition 5.3 (Completeness): Consider a set R of rules applicable to UM-relations. R is said complete if it is complete wrt $1^{\text {st }}$-order logic. Intuitively, R is complete if it implies all the UM-relations and incompatibilities between UM-relations that can be implied logically (i.e. by $1^{\text {st }}$-order logic).

Proposition 5.2 (Soundness): The set of UM-rules $\left\{\mathrm{I}_{1}-\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{16}, \mathrm{C}_{1-}\right.$ $\left.\mathrm{C}_{6}\right\}$ is sound.

Proposition 5.3 (Completeness wrt $\mathrm{R}_{1}-\mathrm{R}_{9}$): The set of UM-rules $\left\{\mathrm{I}_{1}-\mathrm{I}_{5}\right.$, $\left.\mathrm{F}_{1}-\mathrm{F}_{4}, \mathrm{~F}_{9}-\mathrm{F}_{12}, \mathrm{C}_{1}-\mathrm{C}_{2}\right\}$ is complete wrt $\mathrm{R}_{1}-\mathrm{R}_{9}$.

5.6. Discussion

5.6.1. Relation of soundness and completeness with FI detection

Soundness is stated in Proposition 5.2 for $\left\{\mathrm{I}_{1}-\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{16}, \mathrm{C}_{1}-\mathrm{C}_{6}\right\}$, while Proposition 5.3 states completeness of only a subset of $\left\{\mathrm{I}_{1}-\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{16}, \mathrm{C}_{1}-\right.$ $\left.\mathrm{C}_{6}\right\}$. The question is:
Why soundness and completeness are not stated for the same set of UMrules?

Or more precisely:
Why soundness is stated for $\left\{I_{1}-I_{5}, F_{1}-F_{16}, C_{1}-C_{6}\right\}$ while it can be stated for the subset $\left\{I_{1}-I_{5}, F_{1}-F_{4}, F_{9}-F_{12}, C_{1}-C_{2}\right\}$ which is proved to be sound and complete?
Our answer is developed in the following paragraph.
In fact, we can use uniquely the set of UM-rules $\left\{\mathrm{I}_{1}-\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{4}, \mathrm{~F}_{9}-\mathrm{F}_{12}\right.$, $\left.\mathrm{C}_{1}-\mathrm{C}_{2}\right\}$ and base our FI detection on this set. The problem is that we have
realized by experience that the UM-rules $\mathrm{I}_{1}-\mathrm{I}_{5}$ may imply much more UM-relations than what is necessary for our FI detection. Hence, there is the risk to undermine significantly the efficiency of our FI detection procedure. By combining the results of Sections 5.3-5.4, it is easy to see that $\mathrm{F}_{5}-\mathrm{F}_{8}, \mathrm{~F}_{13}-\mathrm{F}_{16}$ and $\mathrm{C}_{3}-\mathrm{C}_{6}$ are implied by combining $\mathrm{I}_{1}-\mathrm{I}_{5}$ with $\left\{\mathrm{F}_{1}-\mathrm{F}_{4}\right.$, $\left.\mathrm{F}_{9}-\mathrm{F}_{12}, \mathrm{C}_{1}-\mathrm{C}_{2}\right\}$. Interestingly, we have realized by experience that $\mathrm{I}_{1}-\mathrm{I}_{5}$ are indeed relevant for our FI detection only to be combined with $\left\{\mathrm{F}_{1}-\mathrm{F}_{4}, \mathrm{~F}_{9}-\right.$ $\left.\mathrm{F}_{12}, \mathrm{C}_{1}-\mathrm{C}_{2}\right\}$ to derive what can be derived by the missing UM-rules $\mathrm{F}_{5}-\mathrm{F}_{8}$, $\mathrm{F}_{13}-\mathrm{F}_{16}$ and $\mathrm{C}_{3}-\mathrm{C}_{6}$. Our strategy is therefore to adapt the complete set $\left\{\mathrm{I}_{1}-\right.$ $\left.\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{4}, \mathrm{~F}_{9}-\mathrm{F}_{12}, \mathrm{C}_{1}-\mathrm{C}_{2}\right\}$ by removing $\mathrm{I}_{1}-\mathrm{I}_{5}$ and adding $\mathrm{F}_{5}-\mathrm{F}_{8}, \mathrm{~F}_{13}-\mathrm{F}_{16}$ and $\mathrm{C}_{3}-\mathrm{C}_{6}$. We obtain $\left\{\mathrm{F}_{1}-\mathrm{F}_{16}, \mathrm{C}_{1}-\mathrm{C}_{6}\right\}$ which is the set of UM-rules which are used for our FI detection. Intuitively, this is equivalent to using the complete set $\left\{\mathrm{I}_{1}-\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{16}, \mathrm{C}_{1}-\mathrm{C}_{6}\right\}$, but by applying $\mathrm{I}_{1}-\mathrm{I}_{5}$ only to derive UM-relations which may be relevant for our FI detection.

5.6.2. About soundness of $R_{1}-R_{9}$

Completeness stated by Proposition 5.3 is wrt $\mathrm{R}_{1}-\mathrm{R}_{9}$. Intuitively, every UM-relation and incompatibility between UM-relations that is implied from $\mathrm{R}_{1}-\mathrm{R}_{9}$ can also be implied from $\left\{\mathrm{I}_{1}-\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{4}, \mathrm{~F}_{9}-\mathrm{F}_{12}, \mathrm{C}_{1}-\mathrm{C}_{2}\right\}$. A question that arises is: Is $\left\{I_{1}-I_{5}, F_{1}-F_{8}, C_{1}-C_{4}\right\}$ complete (Def. 5.3) ? The answer to this question is Yes if $\mathrm{R}_{1}-\mathrm{R}_{9}$ is complete. Hence, another question that arises is: $I s R_{l}-R_{9}$ complete? At the present time, we have not a formal answer to this question, but it is worth noting that our development of $\mathrm{R}_{1}-\mathrm{R}_{9}$ has been dictated by the desire to obtain a sound set of rules which is as much complete as possible. Let us give some explanations to clarify this aspect. Recall that UM-relations are based on:

1) actions "use" and "modify", and
2) characterizing each action by "always", "sometimes", "never" or "maybe".
The development of $\mathrm{R}_{1}-\mathrm{R}_{9}$ has been dictated as follows:

- $\mathrm{R}_{1}-\mathrm{R}_{2}$ are related to point 1 : they targets to specify as much as possible the distinction between actions "use" and "modify".
$-\mathrm{R}_{3}-\mathrm{R}_{5}$ are related to point 2 : they target to specify as much as possible the distinction between "always", "sometimes" and "never". "maybe" is not considered because it is a too coarse information which does not permit any deduction.
$-\mathrm{R}_{6}-\mathrm{R}_{9}$ target to derive logically new UM-relations by combining existing UM-relations.
$\mathrm{R}_{6}-\mathrm{R}_{7}$ consider the cases where an action is followed by "use!" or "modify!", while R_{8} - R_{9} consider the cases where an action is followed by "use?" or "modify?".
The two cases are distinguished because $\mathrm{R}_{8}-\mathrm{R}_{9}$ are too coarse since they imply a
UM-relation with an action "use\#" or "modify\#" (see Section 5.1.3).

5.6.3. Utility of use\# and modify\#

One may wonder why "maybe" characterization (use\#, modify\#) has been used although it represents a too coarse information. In fact, a UMrelation "L x\# R" (where x is "use" or "modify") is clearly irrelevant if there exists a UM-relation with the same L, R and x, but where x is characterized by !, ? or \% instead of \#. For example, "A use\# B" is irrelevant if we have "A use? B", "A use! B" or "A use\% B". Otherwise, we will see in Sect. 6 that "L x\# R" may be relevant in FI detection to model a suspected FI.

5.7. Example of Using UM-rules to Derive new UM-Relations

Example 6: Consider Example 4 of Sect. 4.4 and apply some UM-rules to the UM-relations M1-M9. We obtain the following UM-relations that enrich the UM-model of Lender.
Applying F_{3} to M6 and M7: Lender modify! Lender.amount
Applying F4 to M8 and M1: Lender.quote() modify? Approver.amount to M9 and M3 : Lender.quote() modify? Assessor.amount
Applying F9 to M6 and M8: Lender use\# Approver.approve() to M6 and M9 : Lender use\# Assessor.assess()
Applying F4 to M9 and M4 : Lender.quote() modify? Assessor.risk Applying F_{12} to M8 and M2: Lender.quote() modify\# Approver.rate to M9 and M5 : Lender.quote() modify\# Assessor.rate

In this example, the suspected accesses (use\#, modify\#) deduced from F_{9} and F_{12} are effective, hence we have a more accurate model if we replace "use\#" by "use?" and "modify\#" by "modify?". We have not shown the influence of conditions in the application of rules; we will illustrate their influence in FI detection in Sects. 7.1 and 7.5.

6. FI Detection Method Based on UM-Relations

As already mentioned, there exist many FI detection methods with a high power of detection, but which are prone to state space explosion. In this section, we propose an FI detection method that reduces this problem while keeping an acceptable power of FI detection. The approach is offline and consists in detecting FIs in a WS during its design (from scratch or by composing existing WS). More precisely, the approach consists in constructing a UM-model of the WS under design, and then in analyzing such a UM-model to detect FI patterns which correspond to symptoms of FI. The designer is informed about each detected symptom and should check if it corresponds to an effective FI. This necessity of the intervention of the designer implies that the FI detection procedure is not completely automatic. This is the price to pay to reduce the state space complexity.

The proposed FI detection method consists of three steps. The first step is to construct a UM-model of the WS under design. The second step is to check if the UM-model is well-formed (i.e. all its UM-relations are well-formed) and to enrich it. The third step is to analyze the UM-model to detect symptoms of FIs. The three steps are presented in Sections 6.16.3 respectively.

Definition 6.1 (F-relevance) A pair of UM-relations is said $\mathrm{F}_{1-8^{-}}$ relevant if it can be a left hand side member of a fusion UM-rule of $F_{1}-F_{8}$. A pair of UM-relations is said F_{9-16}-relevant if it can be a left hand side member of a fusion UM -rule of $\mathrm{F}_{9}-\mathrm{F}_{16}$.

6.1. Step 1: UM-Model Construction

Let \mathbf{S} be the WS under design. The first step can be skipped if the UM-model of \mathbf{S} already exists and is given as input to the second step (Section 6.2). Otherwise, we have the following two different cases, which are presented in Sections 6.1.1 and 6.1.2. respectively:

- \mathbf{S} is designed from scratch, i.e. \mathbf{S} is a feature (see Sect. 4.1);
- \mathbf{S} is designed by composing several given WSs $S_{1}, S_{2}, \ldots, S_{n}$.

6.1.1. Step 1 when S is designed from scratch

We consider that the designer has defined on paper the UM-model of S. The first level of the model is an interface model (Section 4.1) which consists of a class with empty methods. Since \mathbf{S} is a feature (basic WS), the attributes of the class are basic. The second level is a UM-model consisting of UM-relations "L x R", where L and R are object(s) of the class defined in the first level, or attributes or methods of that object(s), as shown in Sections 4.2-4.5. The designer edits the UM-model, for example with any text editor or some UM-editor which is specifically designed to edit interactively UM-models.

6.1.2. Step 1 when S is designed by composing $W S s S_{1}, S_{2}, \ldots, S_{n}$

We consider that UM-models $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{n}}$ are given as inputs of Step 1, for example in text files. The designer has access to these UM-models, for example with any text editor or some specific UM-editor. With the available editor, the designer has to construct a UM-model which merges the UM-models of $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{n}}$. Some treatments may have to be done in the obtained UM-model. Typically, a treatment consists in removing, adding and/or replacing a UM-relation. The treatment is for example used to model the coordination of the composed WSs. The result of merging and treatment is the UM-model of \mathbf{S}. To understand the necessity of treatment, consider for example the composition of two WSs S_{1} and S_{2} by choreography. Each of S_{1} and S_{2} may have to call methods of the other one. Hence, the composition of S_{1} and S_{2} may require that the designer applies some modifications to S_{1} and/or S_{2} by removing, adding and/or replacing some UM-relation(s). The modified UM-relations should be indicated (e.g. by a flag), because the modifications may be a cause of FI and thus should be considered in the phase of FI detection (in Section 6.3, Step 3, Pattern 3).

6.2. Step 2: Verifying that the UM-Model of S is well-formed and Enriching it

This step is divided in the following three substeps which will be explained and justified in their corresponding sections:

- Substep 2a: checking if each UM-relation of the UM-model is wellformed, as specified in Section 4.3;
- Substep 2b: enriching the UM-model by applying the UM-rules $\mathrm{F}_{1}-\mathrm{F}_{8}$ of Sections 5.3;
- Substep 2c: enriching the UM-model by applying the UM-rules F9F_{16} of Sections 5.3.
Substeps 2 b and 2 c are used separately, because $\mathrm{F}_{9}-\mathrm{F}_{16}$ derive UMrelations with actions use\# and modify\# and require a specific treatment as explained in Section 5.6.3.

Substeps $2 \mathrm{a}-2 \mathrm{c}$ will be illustrated by the following example of UMmodel, where the UM-relations are identified by $\mathrm{r}_{\mathrm{i}}, m()$ is a method, and v is a basic attribute:

6.2.1. Substep $2 a$: verifying if all UM-relations are well-formed

The constraints specified in Section 4.3.1 are checked for each UMrelation "L use R", and the constraints specified in Section 4.3.2 are checked for each UM-relation "L modify R". At the end of the procedure (outlined below), the returned set X contains all UM-relations detected as non-well-formed. We consider that the subsequent steps cannot be executed while the returned X is not empty. Hence, when X is not empty, the designer must correct the non-well-formed UM-relations and reexecute Substep 2a until the returned X is empty. As in Step 1 (Section 6.1.2), the correction should be indicated (e.g. by a flag), because it may be a cause of FI and thus should be considered in the phase of FI detection (in Section 6.3, Step 3, Pattern 3).

Procedure to find the non-well-formed UM-relations

Input: $\mathrm{R}=$ set of UM-relations obtained after Step 1
Result: X = set of non-well-formed UM-relations of R
BEGIN

```
    X := empty set
    for each UM-relation A of R :
        if (A is non-well-formed)
        |insert A in X I have not used "move A to X" because I do not want
to remove A from R
    end-if
end-for
    return X
```


END

For our example, the UM-rule r_{8} is non-well-formed because in "L modify R", R can be a basic or complex attribute, it cannot be a method (see Section 4.3.2). A method is used (by calling it), it cannot be modified. Another non-well-formed UM-rule is r_{9} because in "L x R", L cannot be a basic attribute; the latter can be used or modified, it cannot use or modify. We consider here that the adopted solution is to remove the non-well-formed r_{8} and r_{9}. This may require adapting the WS \mathbf{S} under design.

6.2.2. Substep 2b: enriching the UM-model by applying $F_{1}-F_{8}$

In Section 5.6.1, we have explained why we will use only the set of UM-rules $\left\{\mathrm{F}_{1}-\mathrm{F}_{16}, \mathrm{C}_{1}-\mathrm{C}_{6}\right\}$. In fact, the present substep 2 b uses $\mathrm{F}_{1}-\mathrm{F}_{8}$, while substep 2c uses $\mathrm{F}_{9}-\mathrm{F}_{16}$. The UM-rules $\mathrm{C}_{1}-\mathrm{C}_{6}$ will be used in Step 3, more precisely in Pattern 5 of Section 6.3.

The UM-model R of \mathbf{S} is enriched "maximally" by synthesizing all the new UM-relations that are implied by the UM-rules $\mathrm{F}_{1}-\mathrm{F}_{8}$. By "maximally", we mean "iteratively until no new UM-relation is derived". This can be realized by a fix-point method which iterates the UM-rules $\mathrm{F}_{1}-\mathrm{F}_{8}$ until no new UM-relation is generated. The method converges because of the finite numbers of rules ($\mathrm{F}_{1}-\mathrm{F}_{8}$) and actions (use!, use?, use\%, modify!, modify?, modify\%). The structure of the iterative method is shown below.

Explanations of the procedure below: Its input R is the current set of UM-relations. Its result is an enriched R , i.e. R with additional UMrelations derived by applying fusion UM-rules $\mathrm{F}_{1}-\mathrm{F}_{8}$. F contains the set of F_{1-8}-relevant pairs of UM-relations of R which have not yet been treated as a left hand side member of a fusion UM-rule to derive a new UMrelation. Hence, F is initialized as the set of all F_{1-8}-relevant pairs of UM-
relations of R. The simplest approach to construct F consists in considering every UM-relation A of R and comparing it with every other UM-relations B of R to determine if the pair (A, B) is the left hand side member of a fusion UM-rule in $\mathrm{F}_{1}-\mathrm{F}_{8}$. If yes, the pair is inserted in F . The while-loop generates all the new UM-relations that can be derived by applying the UM-rules $F_{1}-F_{8}$ to the pairs of UM-relations of F. At each while-iteration, we select some pair of F , and the objective is to apply the fusion UM-rule F that has as left hand side member. Let B be the UM-relation derived by F. If B is not already in R, it is inserted in R (because R must contain all derived UM-relations). The for-loop consists in updating F by comparing B with every other UM-relation U of R and to insert the pair (B, U) in F if it is F_{1-8}-relevant (to treat (B, U) in a subsequent while-iteration, as a left hand side member of a UM-rule to try to derive a new UM-relation). Then, the pair is removed from F when it has been treated.

Procedure to enrich the UM-model R by using $\mathrm{F}_{1}-\mathrm{F}_{8}$:
Input: $\mathrm{R}=$ set of UM-relations obtained after Substep 2a
Result: Enriched R
BEGIN
F := set of all $\mathrm{F}_{1-8 \text {-relevant pairs of UM-relations of } \mathrm{R}}$
while (F is not empty):
select some pair of F
let F be the fusion UM-rule having as left hand side member let B be the UM-relation which is the right hand side member of F if (B is not in R) : insert B in R for every UM-relation U in R if (B, U) is F_{1-8}-relevant: insert (B, U) in F end-for
end-if remove the pair from F end-while
END
For our example, the UM-relations r_{8} and r_{9} were removed in Step 2a and the UM-model R after Substep 2a is $\left\{\mathrm{r}_{1}, \ldots, \mathrm{r}_{7}\right\}$. The set of $\mathrm{F}_{1-8^{-}}$ relevant pairs is $F=\left\{\left(r_{1}, r_{3}\right),\left(r_{5}, r_{1}\right)\right\}$. The two pairs of F are left hand
side members of UM-rules F_{3} and F_{2} respectively. Let us execute the procedure to this example.
$1^{\text {st }}$ iteration: by applying F_{3} to $\left(\mathrm{r}_{1}, \mathrm{r}_{3}\right)$, the following new UM-relation r_{10} is derived:

$$
\mathrm{r}_{10} \text { : "U modify! W" }
$$

r_{10} is inserted in R ; its addition implies the new F_{1-8}-relevant pair $\left(\mathrm{r}_{5}, \mathrm{r}_{10}\right)$ which is inserted to F. The treated pair $\left(r_{1}, r_{3}\right)$ is removed from F. Hence, we obtain $R=\left\{r_{1}, \ldots, r_{7}, r_{10}\right\}$ and F $=\left\{\left(\mathrm{r}_{5}, \mathrm{r}_{1}\right),\left(\mathrm{r}_{5}, \mathrm{r}_{10}\right)\right\}$.
$2^{\text {nd }}$ iteration: by applying F_{2} to ($\mathrm{r}_{5}, \mathrm{r}_{1}$), the following new UM-relation r_{11} is derived: r_{11} : "X use? V"
r_{11} is inserted in R; its addition implies the new F_{1-8}-relevant pair $\left(r_{11}, r_{3}\right)$ which is inserted in F. The treated pair $\left(r_{5}, r_{1}\right)$ is removed from F. Hence, we obtain $\mathrm{R}=\left\{\mathrm{r}_{1}, \ldots, \mathrm{r}_{7}, \mathrm{r}_{10}, \mathrm{r}_{11}\right\}$ and $\mathrm{F}=\left\{\left(\mathrm{r}_{5}, \mathrm{r}_{10}\right),\left(\mathrm{r}_{11}, \mathrm{r}_{3}\right)\right\}$.
$3^{\text {rd }}$ iteration: by applying F_{4} to ($\mathrm{r}_{5}, \mathrm{r}_{10}$), the following new UM-relation r_{12} is derived:
r_{12} : "X mod? W"
r_{12} is inserted in R ; its addition implies no new F_{1-8}-relevant pair. The treated pair $\left(r_{5}, r_{10}\right)$ is removed from F. Hence, we obtain $R=\left\{r_{1}, \ldots, r_{7}\right.$, $\left.\mathrm{r}_{10}, \mathrm{r}_{11}, \mathrm{r}_{12}\right\}$ and $\mathrm{F}=\left\{\left(\mathrm{r}_{11}, \mathrm{r}_{3}\right)\right\}$.
$4^{\text {th }}$ iteration: by applying F_{4} to from $\left(\mathrm{r}_{11}, \mathrm{r}_{3}\right)$, the existing UM-relation r_{12} is derived. The treated pair $\left(r_{11}, r_{3}\right)$ is removed from F which becomes empty, and hence the while-loop terminates. We obtain $R=\left\{r_{1}, \ldots, r_{7}\right.$, $\left.\mathrm{r}_{10}, \mathrm{r}_{11}, \mathrm{r}_{12}\right\}$.

6.2.3. Substep 2c: enriching the UM-model by applying $F_{9}-F_{16}$

We proceed with a similar procedure as in Substep 2b, except that:

- we consider UM-rules $\mathrm{F}_{9}-\mathrm{F}_{16}$ instead of $\mathrm{F}_{1}-\mathrm{F}_{8}$;
- every new derived UM-relation "L use\# R" or "L modify\# R" is removed if the UM-model of \mathbf{S} contains a UM-relation with the same L, R and x , but where x is characterized by !, ? or $\%$ instead of \# (see Section 5.6.3).
For our example, the set of UM-relations after Substep 2 b is $\mathrm{R}=\left\{\mathrm{r}_{1}\right.$, $\left.\ldots, r_{7}, r_{10}, r_{11}, r_{12}\right\}$. The set of F_{9-16}-relevant pairs is $\mathrm{F}=\left\{\left(\mathrm{r}_{3}, \mathrm{r}_{6}\right)\right\}$, where $\left(r_{3}, r_{6}\right)$ is a left hand side member of the UM-rule F_{13}. Let us execute the procedure to this example.
$I^{\text {st }}$ iteration: by applying F_{13} to $\left(\mathrm{r}_{3}, \mathrm{r}_{6}\right)$, the following new UM-relation r_{13} is derived:

$$
\mathrm{r}_{13} \text { : "V use\# Z" }
$$

r_{13} is inserted in R, its addition implies no new F_{9-16}-relevant pair. The treated pair (r_{3}, r_{6}) is removed from F which becomes empty, and hence the while-loop terminates. R_{13} is not removed from R because R contains none of "V use! Z", "V use? Z" and "V use\% Z". Hence, after Step 2c we obtain $\mathrm{R}=\left\{\mathrm{r}_{1}, \ldots, \mathrm{r}_{7}, \mathrm{r}_{10}, \ldots, \mathrm{r}_{13}\right\}$.

6.3. Step 3: FI Detection

Step 3 is the proper FI detection procedure. We have identified six FI patterns that represent symptoms (hence potentiality) of FIs. The procedure of Step 3 searches FI patterns in the UM-model R obtained in Step 2, and informs the designer about every detected FI pattern to draw his attention on the corresponding suspected FI. The designer should then react by making adequate verifications. The six identified FI patterns are presented below. For each FI pattern, we indicate a typical reaction of the designer to determine whether the FI is effective or not.

Pattern 1. There exists a "reflexive" UM-relation " $a()$ use! $a()$ " or " $a()$ use? $a()$ " or " $a()$ use\# $a()$ ", where $a()$ is a method. This is a symptom of looping behavior which is illustrated by the example of Section 7.1.

Reaction of the designer: the designer should check whether there is an effective looping behavior with action $a()$:

Pattern 2. There exist UM-relation(s) that "modify" and possibly "use" the same entity. That is, two or more UM-relations " K m R " and "L n R " are detected, where m is any "modify*" other than "modify\%", and n is any "use*" or "modify*" other than "use\%" and "modify\%". This is a symptom of resource conflict or race condition which is illustrated by the examples of Sections 7.4, 7.7, 8.1, 8.2, 8.3.
Reaction of the designer: the designer should check whether there exists an effective conflicting access to R .

Pattern 3. There exist UM-relation(s) obtained (in Step 1 and/or Step 2a) by correcting (removing, adding and/or replacing) UM-relation(s) of $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}$. There is hence the possibility that an identified correction may violate requirements of $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}$ the designer has in mind,
hence the potentiality of FI. This case is illustrated by the example of Sect. 7.2.
Reaction of the designer: the designer should check whether the identified.
corrections violate requirements.
Pattern 4. There exist UM-relation(s) with restrictions. By the generic term "restriction", we mean any of the following two situations:

- There exist UM-relations "L use? R" or "L modify? R" which are associated to specified conditions (Section 4.5).
Reaction of the designer: the designer should check that the specified conditions are respected.
- There exist UM-relation(s) "L use\% R" or "L modify\% R".

Reaction of the designer: the designer should check that for every "L use\% R", R is effectively never used by L ; and for every " L modify $\% \mathrm{R}$ ", R is effectively never modified by L .
The two sub-cases of Pattern 4 are illustrated in Section 7.5 with use? and modify\%.

Pattern 5. There exist incompatible UM-relations. We have actually two types of incompatibilities:

- Two UM-relations "A use* $p()$ " and "A use* $q()$ ", where * may be "!" or "?", and $p()$ and $q()$ are methods which are incompatible with each other. Here, we assume that in the UM-model R, the designer has specified pairs of incompatible methods.
For example, this can be formally expressed as follows: for each method $p()$ having incompatible methods, we specify the set $\left\{q_{1}()\right.$, $\left.q_{2}(), \ldots\right\}$ of methods which are incompatible with $p()$ by: Incompatible $[p()]=q_{1}(), q_{2}(), \ldots$
This case is illustrated by the example of Section 7.3.
- Two UM-relations which are incompatible by the contradiction UM-rules $\mathrm{C}_{1}-\mathrm{C}_{6}$ (Section 5.4).
Incompatibilities are symptoms of inconsistent behavior.
Reaction of the designer: the designer should check that any detected incompatibility really exists.
Pattern 6. Forbidden UM-relation(s) are present or mandatory UMrelation(s) are missing. Here, we assume that in the UM-model R, the designer has specified forbidden UM-relation and mandatory UMrelations. For example, this can be formally expressed as follows:

Each mandatory (resp. forbidden) UM-relation is followed at its right by the keyword Mandatory (resp. Forbidden). This case is illustrated by the examples of Sections 7.2 and 7.6.
Reaction of the designer: the designer should check whether the detected forbidden UM-relations really occur, and whether the missing mandatory UM-relations really do not occur.

Note that we consider only FI detection and not FI resolution. As we have shown, when an FI is detected and reported to the designer, his reaction is to determine if the FI is effective. A further step (left for future work) is to determine how to correct the UM-model to eliminate the detected FIs.

6.4. Results and Discussion on Computational Complexity

The development of the UM-based FI detection method has been motivated by the desire to reduce state space explosion. The approach has been that instead of modeling a feature or WS exhaustively by representing many of its states and transitions, we model only certain of its behaviors and properties that are judged relevant. Those relevant behaviors and properties are in the form of UM-relations which themselves are based on objects and their attributes and methods. Two questions arise:
a) How to identify relevant behaviors and properties?
b) How to quantify the reduction of complexity by this approach?

Point a) requires designers who have much experience in designing web services or more generally software services. The designers must also have a good knowledge of the specifications of the WS under design. We have used "designers" in the plural because we think that a good approach to guarantee a good estimation of relevant behaviors and properties is the well-known principle of diverse design. The principle is that the same specification of the WS under design is given to several teams who proceed independently to design different versions of UMmodels of the WS. Then, the resulting multiple versions are compared with each other to detect their differences. Finally, the teams discuss with each other to agree on a common UM-model. A good example of successful application of diverse design can be found in ${ }^{[36]}$ for firewall design.

About Point b), we have studied the computational complexity of the three steps of FI detection (of Sections 6.1-6.3). The obtained results are given by the following proposition (its proof is in Section 10.4).

Proposition 6.1 (Complexity of the three steps of FI detection): Let $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}$ be the WSs to be composed and $n b R_{1}, \ldots, n b R_{\mathrm{n}}$ be the sizes (i.e. numbers of UM-relations) of their respective UM-models. The computational complexity of Step 1 is in $\mathrm{O}\left(n b R_{1}+\ldots+n b R_{n}\right)$. The computational complexity of Step2 is in $\mathrm{O}\left(\left(n b R_{1}+\ldots+n b R_{n}\right)^{6}\right)$. The computational complexity of Step 3 is in $\mathrm{O}\left(\left(n b R_{1}+\ldots+n b R_{n}\right)^{4}\right)$.

In the case of a single WS (i.e., WS designed from scratch), the above results hold by taking a single $n b R$ instead of a sum $n b R_{1}+\ldots+n b R_{n}$.

Let us discuss the results of Proposition 6.1 in comparison to the complexities obtained with more exhaustive models such as those based on automata.

- The exponents 4 and 6 in some results of Prop. 6.1 may seem excessive, but it is worth noting that these are theoretical upper bounds which are very far from the concrete results we have obtained in real examples. The latter are not higher than $\mathrm{O}\left(\left(n b R_{1}+\ldots+n b R_{n}\right)^{2}\right)$. Even in the theory, it may be impossible to reach complexity with exponents 4 and 6 , because our complexity study has been quite permissive as it can be seen in the proof of Prop. 6.1.
- About a basic WS, i.e. not composed of other WSs: with our experience, we expect that the size of an automaton modeling a basic WS should be at least 10 times higher than the size of a UM-model of such a basic WS.
- About a complex WS, i.e. composed of several WSs: the sizes of the composed UM-models are summed, instead of being multiplied as it is the case with automata-based models. Such a multiplication is the main cause of the well-known state space explosion problem.

7. Demonstration of FI Detection in the Benchmark of ${ }^{[13]}$ and in an Example of ${ }^{[14]}$

Let us demonstrate our FI detection method in the examples of the benchmark of ${ }^{[13]}$. The latter contains the case study of a fictitious virtual
bookstore on which is constructed a benchmark of eight FIs. The following individual WSs are defined:
iPassport is an identity management WS that simplifies authentication with multiple
service providers.
PayMe is a payment processing WS that allows payers to make secure payments online, and simplifies credit card processing for payees.
ShipEx is a shipping WS that provides shippers with guaranteed delivery of product, and simplifies tracking of a shipment for shipees.
Shark is a caching WS that improves performance by storing the results of previous requests.
Then, three composite WSs Amazin, Supplier and Customer are constructed from the above individual WSs. Amazin is a virtual bookstore which relies on a number of Suppliers, and gives Customers access to its virtual catalog and the option to order books from the catalog through an Order Processing feature.

7.1. Example 1 of ${ }^{[13]}$: Called "OrderProcessing - OrderProcessing"

The FI manifests itself by a blocking situation in the following way. An order is sent to Supplier $_{1}$ (by calling a method $\operatorname{order}()$ of Supplier $_{1}$) who forwards the order to Supplier ${ }_{2}$ (by calling a method $\operatorname{order}()$ of Supplier $_{2}$) because his stock is empty. Then, Supplier 2 in turn decides to forward the order to Supplier ${ }_{1}$ (by calling a method order () of Supplier ${ }_{1}$) because his stock too is empty too. Hence, we reach the blocking situation where each supplier is waiting the reception of the ordered book from the other supplier. Let us see how our FI detection method detects such FI. The UM-models of Supplier 1 and Supplier 2_{2} contain respectively the following UM-relations with conditions, as seen in Section 4.5:
UM1:"Supplier ${ }_{1}$.order() use? SUPPLIER.order()": [SUPPLIER not comprising Supplier r_{1}],
UM2: "Supplier 2. order () use? SUPPLIER.order()" : [SUPPLIER not comprising Supplier ${ }_{2}$].

The UM-models models of Supplier ${ }_{1}$ and Supplier $_{2}$ are composed (Step 1) and the resulting UM-model is enriched (Step 2). In Step 2c, the UM-rule F_{10} is applied to UM1 and UM2, but after setting SUPPLIER of UM1 and UM2 to Supplier r_{2} and Supplier ${ }_{1}$, respectively; we obtain:

UM1-UM2: "Supplier ${ }_{1}$.order () use\# Supplier ${ }_{1}$.order ()".

Hence, FI pattern 1 is detected in Step 3. Note that this scenario can be generalized to a loop involving more than two suppliers: Supplier ${ }_{1}$ is waiting Supplier ${ }_{2}$ who is waiting Supplier $_{3} \ldots$ Supplier $_{\mathrm{k}}$ who is waiting Supplier $_{1}$.

7.2. Example 2 of ${ }^{[13]}$: Called "Caching - Process Payment"

The FI manifests itself by the fact that, if an ordered book is in the cache (because it has been previously purchased), then the process payment is shortcut. Hence, the order is completed without payment. Let us see how our FI detection method detects such an FI. Supplier and Caching WSs are specified by a set of UM-relations. Consider a method completeOrder() which is called in Supplier when everything is ready to start payment and delivery processes. The payment process starts by calling a method pay(). A UM-relation which is particularly relevant in this example is: completeOrder () use! pay()

The UM-models of Supplier and Caching are composed (Step 1) and the resulting UM-model is enriched (Step 2). This example illustrates the situation where composing two WSs requires that the designer modifies the process payment of Supplier as explained above. The present composition has the effect to replace the call of a method pay() by a conditional call. Hence the above UM-relation is replaced by the UMrelation completeOrder() use? pay()" (i.e., "use!" replaced by "use?"). Hence, FI pattern 3 is detected in Step 3.

Another way to detect the FI is that the designer specifies the UMrelation "completeOrder() use! pay()"as mandatory. The FI is deduced by the fact that the composition has modified this mandatory UM-relation. Hence, the FI pattern FI pattern 6 is detected in Step 3.

7.3. Example 3 of ${ }^{[13]}$: Called "Order Processing - (Delivery or Process Payment)"

We consider two situations of FI that may occur when the order of a book is aborted (before its completion). These two FIs are referred to as (a) and (b) as follows:
(a) FI Called "Order Processing - Delivery" in ${ }^{[13]}$: The FI manifests itself when, due to timing errors, a process payment is aborted while the delivery is completed (instead of being aborted). Hence, the
possibility to receive a book which has not been paid (as in Example 2, but for a different reason).
(b) FI Called "Order Processing - Process Payment" in ${ }^{[13]}$: The FI manifests itself when, due to timing errors, a delivery is aborted while the process payment is completed (instead of being aborted). Hence, the possibility to pay for a book which is not received.
Let us see how our FI detection method detects such FIs. A supplier WS is composed of several features such as: ProcessPayment, Delivery, and OrderProcessing, each one being described by UM-relations. The different UM-models are composed (Step 1) to obtain a UM-model of Supplier which is enriched (Step 2).

The UM-model of Supplier uses the following methods: abortOrder() is called to abort the current order, $\operatorname{pay}()$ is called to start payment for the ordered product, and deliver () is called to start delivery of the ordered product. abortOrder () is incompatible with deliver () and $\operatorname{pay}()$, because payment and delivery must not be done when an order is aborted. We assume that the designer has specified these incompatibilities.

The UM-model contains the following three UM-relations:
R1: "Supplier use? abortOrder()", R2: "Supplier use? deliver()", R3: "Supplier use? pay()"
Hence, the FI pattern FI pattern 5 is detected in Step 3 for the pairs ($\mathrm{R} 1, \mathrm{R} 2$) and ($\mathrm{R} 1, \mathrm{R} 3$). The incompatible pair (R1, R2) corresponds to FI (a), and the incompatible pair (R1, R3 corresponds to FI (b).

7.4. Example 4 of ${ }^{[13]}$: Called "Order Processing - Fulfill Order"

The FI considered here is due to an ambiguity on the semantics of the price. More precisely, the FI manifests itself when some features use the term price, but assigning it different semantics. For example, one feature considers the price including taxes, while another feature considers the price excluding taxes. Let us see how our FI detection method detects such FI. The UM-model and Steps 1 and 2 are as in Example 3 (Section 7.3). After steps 1 and 2 The UM-model of Supplier uses two methods orderProcessing() and fulfillOrder() that modify an attribute price, i.e. we have the following UM-relations:
"orderProcessing() modify? price" "fulfillOrder() modify? price"
Hence, FI pattern 2 is detected in Step 3.
7.5. Examples 5, 6, 7 of ${ }^{[13]}$: All Associated to Access Profile

We consider Examples 5, 6 and 7 together, because they correspond to several variants of the same problem: non respecting the profile access policy. Intuitively:
-In example 5 (called "Authenticate User - Access profile" in ${ }^{[13]}$): an untrusted supplier accesses some information in the profile of the customer.
-In example 6 (called "Access Profile - Access profile" in ${ }^{[13]}$): a trusted supplier accesses some information in the profile of the customer, which must be accessible uniquely to the customer.
-In example 7 (called "Manage Profile - Access profile" in ${ }^{[13]}$): a supplier accesses some information in the profile of the customer when the latter is not connected.
After Steps 1 and 2, the resulting UM-model contains UM-relations such as:
"Supplier use? profile" : \{Supplier is authorized\}
"Supplier modify\% profile"
Hence, FI pattern 4 is detected in Step 3. Note the condition \{Supplier is authorized $\}$ associated to the first UM-relation, which models the fact that only the authorized suppliers can read a user profile. The "modify\%" corresponds to the restriction specifying that no supplier is authorized to modify a user profile. Hence, the designer should check if these restrictions are respected. The FIs of Examples 5, 6 and 7 are due to the non-respect of some authorizations.

7.6. Example 8 of ${ }^{[13]}$: Called "Order Processing - Order Processing"

The FI manifests itself by a blocking situation where Supplier $_{1}$ is waiting Supplier 2_{2} who in turn is waiting Supplier ${ }_{1}$, which corresponds exactly to Example 1 (Section 7.1). Hence Examples 1 and 8 are identical, but in Example 8, the FI is presented with a different viewpoint: None of the suppliers is available to the other one. A way to detect this FI is given in Section 7.1. Let us present another way to detect this FI.

We assume that the designer has specified the following UM-relation as forbidden: "Supplier modify? available",
where "available" is a boolean that indicates whether Supplier is available or not. Intuitively, Supplier cannot make himself unavailable.

The fact is that after Steps 1 and 2, the resulting UM-model will contain the above forbidden UM-relation.

Hence, FI pattern 6 is detected in Step 3, which is a symptom that availability changes and hence available can be false in some situations.

7.7. Example of ${ }^{[14]}$: Called "Spell Checking-Formatting"

The FI manifests itself when the Spell Checker and the Formatter use different languages, e.g., US English and UK English. At the formal level, this FI is similar to the FI of Example 4. In the latter, two methods modify an attribute price. In the present example, two features SpellChecker and Formatter modify an attribute lang specifying the used language. After Steps 1 and 2, the resulting UM-model contains the following UM-relations: "SpellChecker modify? lang" "Formatter modify? lang".

Hence, FI pattern 2 is detected in Step 3.

8. Demonstration in Detection of Several FIs of ${ }^{[15]}$

${ }^{[15]}$ presents an interesting comparative study showing that FIs in Telecom-Services are different from FIs in WSs, and hence FI detection methods developed for the former cannot be easily adapted for the latter. We will apply our FI detection to three types of FIs given in ${ }^{[15]}$:

- FI between two WSs;
- FI between two Telecom-services;
- FI between a WS and a Telecom-service.

As we will see, the three FIs are related to FI pattern 2 of Step 3.

8.1. FI Between Two WSs of ${ }^{[15]}$: "Encrypt Information - Payment Information"

The FI manifests itself when the Logging WS uses the encrypted information (purchase order or payment information) while Logging needs to use the information before it is encrypted. After Steps 1 and 2, we obtain UM-relations where an attribute paymentInfo is modified by a method encrypt(), while another method logging() reads the attribute paymentInfo. That is, we have the following UM-relations:
"encrypt() modify! PaymentInfo" "logging() use! PaymentInfo"

Hence, FI pattern 2 is detected in Step 3.

8.2. FI Between Two Telecom-Services of ${ }^{[15]}$:"Voicemail (VM) Call Blocking (CB)"

Contrary to previous examples, here we consider Telecom-services instead of WSs. The FI manifests itself when a caller rejected by CallBlocking ($C B$) of a callee is able to leave a (potentially unwanted) voicemail via Voicemail (VM). After Steps 1 and 2, we obtain UMrelations where an attribute callStatus is modified by $C B$ (to busy status) and read by $V M$ (busy status is the trigger of VM). That is, we have the following UM-relations: " $C B$ modify! callStatus" " $V M$ use! callStatus".
Hence, FI pattern 2 is detected in Step 3.

8.3. FI Between a Telecom-Service and a WS of ${ }^{[15]}$: "Talk-To-Agent (TTA) - Do-Not-Disturb (DND)"

This is a special case, in the sense that we have a mixed composition, i.e., a WS is composed with a Telecom-service. The FI manifests itself when a customer wants to be joined by an agent to talk with him (WS called $T T A$), while he has configured the Telecom-service Do-NotDisturb ($D N D$) to reject all calls. After Steps 1 and 2, we obtain UMrelations where the attribute callStatus (already used in the example of Section 8.2) is modified by $D N D$ (to the status busy, for example) and read by a method $t t a()$. That is, we have the following UM-relations: "DND modify! callStatus", "tta() use! callStatus". Hence, FI pattern 2 is detected in Step 3.

9. Conclusion

We have developed a method to detect FIs in WSs, which makes a trade-off between reducing state space explosion and increasing the power of FI detection. The proposed method is based on the development of a rigorous Use-modify framework. The latter contains a UM-language to describe WSs at a high abstraction level by objects and UM-relations which indicate uniquely information such as who uses what and who modifies what, and characterize each action "use" or "modify" by "always", "sometimes", "never" or "maybe". Conditions and restrictions may also be associated to UM-relations. In addition to the UM-language,
the UM-framework contains also a set of UM-rules (i.e. rules applicable to UM-relations) that are proved to be sound and complete. The UMrules permit to derive new UM-relations from existing UM-relations and detect incompatibilities between UM-relations. The developed UM-based FI detection method reports FI symptoms to the designer who then has to verify the effectiveness of the suspected FIs.

We have demonstrated the applicability of our FI detection method in several concrete examples. Indeed, we have applied our method to detect all FIs of the benchmark of ${ }^{[13]}$ and an FI in ${ }^{[14]}$. We have also applied our method to detect several FIs indicated in ${ }^{[15]}$, where the composed services can be WSs and/or telecommunication services. We think that our FI detection approach can be better than ${ }^{[13]}$ because in the latter many modeling formalisms have to be used: Goal-oriented Requirement Language (GRL), Use-Case Maps (UCM), and Finite State Processes (FSP).

In Section 6.4, we have briefly discussed the gain in computational complexity of our UM-based approach. In a near future work, we plan to study more thoroughly that complexity. For that purpose, we plan to develop a prototype of the UM-based FI detection method to evaluate it more accurately. Another planned future work is to study FI resolution phase, which consists in solving the detected FIs.

10. Proofs

10.1. Proof of Proposition 5.1

We have to prove that the UM-rules $\mathrm{I}_{1}-\mathrm{I}_{5}$ and $\mathrm{F}_{1}-\mathrm{F}_{16}$ preserve the wellformed property specified in Section 4.3 (for $\mathrm{I}_{1}-\mathrm{I}_{5}$, see also the explanations in Section 5.2).

The well-formed property is preserved by $I_{1}-I_{2}$ because for any I_{1} or I_{2}, the well-formed property requires stronger constraints on the left hand side of the UM-rule than on its right hand side.

The well-formed property is preserved by $I_{3}-I_{4}$ because for any I_{3} or I_{4}, The well-formed property requires the same constraints on the left and right hand sides of the UM-rule.

The well-formed property is preserved by I_{5} because of the condition associated with I_{5}.

The well-formed property is preserved by $F_{1}-F_{4}$ because for any of F_{1} to F_{4} : The "well-formed" constraints on L are the same in the left and
right hand sides of the UM-rule; and the "well-formed" constraints on R are the same in the left and right hand sides of the UM-rule.

The well-formed property is preserved by F_{5} (resp. F_{7}) because it is obtained by combining I_{1} with F_{1} (resp. F_{3}) which have just been proved to preserve the well-formed property. In the same way, the well-formed property is preserved by F_{6} (resp. F_{8}) because it is obtained by combining I_{2} with F_{2} (resp. F_{4}) which have just been proved to preserve the wellformed property.

The well-formed property is preserved by $\mathrm{F}_{9}-\mathrm{F}_{16}$ because we can make the same reasoning as with $\mathrm{F}_{1}-\mathrm{F}_{8}$.

10.2. Proof of Proposition 5.2

We have to prove that the set of UM-rules $\left\{\mathrm{I}_{1}-\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{16}, \mathrm{C}_{1}-\mathrm{C}_{6}\right\}$ is sound. We will use the term "logically" to mean "by using reasoning based on $11^{\text {st }}$-order logic".

The set of rules $\mathrm{R}_{1}-\mathrm{R}_{9}$ is sound because every rule R_{1} to R_{9} has been justified logically in Section 5.1 .

In Section 5.2, we have shown that the implication UM-rules $\mathrm{I}_{1}-\mathrm{I}_{5}$ are direct
translations of rules $\mathrm{R}_{1}-\mathrm{R}_{3}$.
In Section 5.3, we have shown that the fusion UM-rules $F_{1}-F_{4}$ are direct translations of rules $\mathrm{R}_{6}-\mathrm{R}_{7}$, and $\mathrm{F}_{9}-\mathrm{F}_{12}$ are direct translations of rules $\mathrm{R}_{8}-\mathrm{R}_{9}$.

In Section 5.4, we have shown that the contradiction UM-rules $\mathrm{C}_{1}-\mathrm{C}_{4}$ are direct translations of rules $\mathrm{R}_{4}-\mathrm{R}_{5}$.

Consequently, the set of UM-rules $\left\{\mathrm{I}_{1}-\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{4}, \mathrm{~F}_{9}-\mathrm{F}_{12}, \mathrm{C}_{1}-\mathrm{C}_{4}\right\}$ is a direct translation of the set of rules $R_{1}-R_{9}$. Since $R_{1}-R_{9}$ is sound, we deduce that its translation $\left\{\mathrm{I}_{1}-\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{4}, \mathrm{~F}_{9}-\mathrm{F}_{12}, \mathrm{C}_{1}-\mathrm{C}_{4}\right\}$ is sound.

In Section 5.3, we have shown that $\mathrm{F}_{5}-\mathrm{F}_{8}$ are derived logically from I_{1-} I_{2} and $\mathrm{F}_{1}-\mathrm{F}_{4}$, and that $\mathrm{F}_{13}-\mathrm{F}_{16}$ are derived logically from $\mathrm{I}_{1}-\mathrm{I}_{2}$ and $\mathrm{F}_{9}-\mathrm{F}_{12}$. In Section 5.4, we have shown that $\mathrm{C}_{5}-\mathrm{C}_{6}$ are derived logically from $\left\{\mathrm{I}_{1}-\right.$ $\left.\mathrm{I}_{5}, \mathrm{C}_{1}-\mathrm{C}_{4}\right\}$. Since $\mathrm{F}_{5}-\mathrm{F}_{8}, \mathrm{~F}_{13}-\mathrm{F}_{16}$ and $\mathrm{C}_{5}-\mathrm{C}_{6}$ are derived logically from UMrules of $\left\{\mathrm{I}_{1}-\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{4}, \mathrm{~F}_{9}-\mathrm{F}_{12}, \mathrm{C}_{1}-\mathrm{C}_{4}\right\}$ which has just been proved to be sound, we have that the whole set $\left\{\mathrm{I}_{1}-\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{16}, \mathrm{C}_{1}-\mathrm{C}_{6}\right\}$ is sound.

10.3. Proof of Proposition 5.3

We have to prove that the set of UM-rules $\left\{\mathrm{I}_{1}-\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{4}, \mathrm{~F}_{9}-\mathrm{F}_{12}, \mathrm{C}_{1}-\mathrm{C}_{2}\right\}$ is complete wrt $\mathrm{R}_{1}-\mathrm{R}_{9}$.

We have shown in Sections 5.2-5.4 and in the proof of Proposition 5.2 that the set of UM-rules $\left\{\mathrm{I}_{1}-\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{4}, \mathrm{~F}_{9}-\mathrm{F}_{12}, \mathrm{C}_{1}-\mathrm{C}_{4}\right\}$ is a direct translation of the set of rules $\mathrm{R}_{1}-\mathrm{R}_{9}$. Moreover, in Sections 5.2-5.4, the UM-rules $\left\{\mathrm{I}_{1}-\right.$ $\left.\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{4}, \mathrm{~F}_{9}-\mathrm{F}_{12}, \mathrm{C}_{1}-\mathrm{C}_{4}\right\}$ have been obtained by considering all possible translations of $\mathrm{R}_{1}-\mathrm{R}_{9}$ into UM-rules. In other words, $\left\{\mathrm{I}_{1}-\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{4}, \mathrm{~F}_{9}-\mathrm{F}_{12}\right.$, $\left.\mathrm{C}_{1}-\mathrm{C}_{4}\right\}$ are the unique possible translations of $\mathrm{R}_{1}-\mathrm{R}_{9}$ into UM-rules. Therefore, $\mathrm{R}_{1}-\mathrm{R}_{9}$ and $\left\{\mathrm{I}_{1}-\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{4}, \mathrm{~F}_{9}-\mathrm{F}_{12}, \mathrm{C}_{1}-\mathrm{C}_{4}\right\}$ imply the same UMrelations and detect the same pairs of incompatible UM-relations. Besides, we have seen in Section 5.4 that $\mathrm{C}_{3}-\mathrm{C}_{4}$ can be implied logically from $\mathrm{I}_{3}-\mathrm{I}_{4}$ and $\mathrm{C}_{1}-\mathrm{C}_{2}$. Hence, C_{3} and C_{4} can be omitted in the study of completeness. Consequently, $\mathrm{R}_{1}-\mathrm{R}_{9}$ and $\left\{\mathrm{I}_{1}-\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{4}, \mathrm{~F}_{9}-\mathrm{F}_{12}, \mathrm{C}_{1}-\mathrm{C}_{2}\right\}$ imply logically the same UM-relations and incompatibilities between UM-relations. In other words, $\left\{\mathrm{I}_{1}-\mathrm{I}_{5}, \mathrm{~F}_{1}-\mathrm{F}_{4}, \mathrm{~F}_{9}-\mathrm{F}_{12}, \mathrm{C}_{1}-\mathrm{C}_{2}\right\}$ is complete wrt $\mathrm{R}_{1}-\mathrm{R}_{9}$.

10.4. Proof of Proposition 6.1

Let $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}$ be the WSs to be composed and $n b R_{1}, \ldots, n b R_{\mathrm{n}}$ be the sizes (i.e. numbers of UM-relations) of their respective UM-models. For simplicity of notation, we use $n b R$ to denote $n b R_{1}+\ldots+n b R_{n}$.

10.4.1 Computational complexity of Step 1

- Merging all UM-relations: its complexity is in the order of the total number of all number of UM-relations, i.e. O $(n b R)$.
- Modifying UM-relations: in the worst case, all UM-relations are modified, which is in the same order as merging, i.e. $\mathrm{O}(n b R)$.
- Adding some UM-relations: the number of added UM-relations is typically quite less than the total number of UM-relations, i.e. its order is smaller than $\mathrm{O}(n b R)$.

Therefore, we obtain that in Step 1 the computational complexity and the number of UM-relations is in $\mathrm{O}(n b R)$.

10.4.2 Computational complexity of Step 2

2a: Check if each UM-relation is well-formed
Its complexity is in the order of the number of UM-relations obtained in Step 1, i.e. $\mathrm{O}(n b R)$.

2b. Enriching the UM-model by applying $\mathrm{F}_{1}-\mathrm{F}_{8}$
Let $|\mathrm{X}|$ denote the size (or cardinality) of a set X .
Let R_{i} and R_{f} be the set R of UM-relations before and after Step 2, respectively (indices i and f are for initial and final). Recall that $\mathrm{O}\left(\left|\mathrm{R}_{\mathrm{i}}\right|\right)=$ $\mathrm{O}(n b R)($ result of Step 1$)$.

Each UM-relation of R_{f} has:

- its left hand side member as a left hand side member of some UMrelation of R_{i};
- its right hand side member as a right hand side member of some UM-relation of R_{i}.

Hence, at the maximum, for each of the left hand side members of UM-relations of R_{i}, we may associate any of the right hand side members of UM-relations of R_{i}. That is, we may have at the maximum $n b R^{2} \mathrm{UM}-$ relations in R_{f}. Consequently, the size of R after Step 2 is upper-bounded by $\mathrm{O}\left(n b R^{2}\right)$, i.e. $\mathrm{O}\left(\left|\mathrm{R}_{\mathrm{f}}\right|\right)=\mathrm{O}\left(n b R^{2}\right)$.

Let us consider the algorithm that constructs R_{f} from R_{i}.
Let F_{i} be the initial F constructed just before the while-loop.
During the execution of this algorithm, we define:

- q as the number of times a UM-relation is inserted in R ;
- $\quad p$ as the number of times a pair of UM -relations is inserted in F ;
- $\quad k$ as the number of times a pair of UM-relations is removed from F.

We have:

- $\quad q$ is in the order of $\left|\mathrm{R}_{\mathrm{f}}\right|$, and we have seen that $\mathrm{O}\left(\left|\mathrm{R}_{\mathrm{f}}\right|\right)=\mathrm{O}\left(n b R^{2}\right)$. Hence, $\mathrm{O}(q)=\mathrm{O}\left(n b R^{2}\right)$.
- F_{i} contains pairs of UM-relations of R_{i}, and we have seen that $\mathrm{O}\left(\left|\mathrm{R}_{\mathrm{i}}\right|\right)=\mathrm{O}(n b R)$. Hence, $\mathrm{O}\left(\left|\mathrm{F}_{\mathrm{i}}\right|\right)=\mathrm{O}\left(\left|\mathrm{R}_{\mathrm{i}}\right|^{2}\right)=\mathrm{O}\left(n b R^{2}\right)$.
- Each of the q times where a UM-relation is inserted in R, we may have pairs of UM-relations inserted in F (in the for-loop). The number of these pairs is at most in the order of the current size of R , which is at most $\mathrm{O}\left(\left|\mathrm{R}_{\mathrm{f}}\right|\right)$ which was shown to be $\mathrm{O}\left(n b R^{2}\right)$. Hence, $\mathrm{O}(p)=\mathrm{O}\left(\left|\mathrm{R}_{\mathrm{f}}\right| \mathrm{x} q\right)=\mathrm{O}\left(n b R^{4}\right)$, because it has been shown that $\mathrm{O}\left(\left|\mathrm{R}_{\mathrm{f}}\right|\right)$ $=\mathrm{O}\left(n b R^{2}\right)$ and $\mathrm{O}(q)=\mathrm{O}\left(n b R^{2}\right)$.
- $\left|\mathrm{F}_{\mathrm{i}}\right|-k+p=0$ (i.e. $k=\left|\mathrm{F}_{\mathrm{i}}\right|+p$), because F is empty at the termination of the algorithm. Since it has been shown that $\mathrm{O}\left(\left|\mathrm{F}_{\mathrm{i}}\right|\right)=$ $\mathrm{O}\left(n b R^{2}\right)$ and $\mathrm{O}(p)=\mathrm{O}\left(n b R^{4}\right)$, we conclude that $\mathrm{O}(k)=\mathrm{O}\left(n b R^{4}\right)$.

We have shown that the number k of iterations of the while-loop is upper-bounded by $n b R^{4}$. At each of the k iterations of the while-loop:

- the complexity for checking the condition of "if" is upper-bounded by $\mathrm{O}\left(\left|\mathrm{R}_{\mathrm{f}}\right|\right)=\mathrm{O}\left(n b R^{2}\right)$ because at most, B is compared to every UMrelation of the current R. The complexity of all other statements is in $\mathrm{O}(1)$.
- The number of iterations of the for-loop is in $\mathrm{O}\left(\left|\mathrm{R}_{\mathrm{f}}\right|\right)=\left(n b R^{2}\right)$

Hence, the complexity of the algorithm (i.e. Step 2b) is upper-bounded by $\mathrm{O}\left(n b R^{4} \times n b R^{2}\right)=\mathrm{O}\left(n b R^{6}\right)$.

2c: Enriching the UM-model by applying $\mathrm{F}_{9}-\mathrm{F}_{16}$
Applying $\mathrm{F}_{9}-\mathrm{F}_{16}$ has its complexity in the same order as that of Step 2 b , i.e. upper-bounded by $\mathrm{O}\left(n b R^{6}\right)$.

Recall that the size of R after Step 2 b (and also Step 2c) is in $\mathrm{O}\left(n b R^{2}\right)$.
Removing irrelevant UM-relations:

- Searching UM-relations "L use\# R" or "L modify\# R": in O(nbR2).
- For each found UM-relation: searching a more accurate UMrelation: in $\mathrm{O}\left(n b R^{2}\right)$.
Hence, removing irrelevant UM-relations is upper-bounded by $\mathrm{O}\left(n b R^{4}\right)$.
Therefore, Step 2c is in $\mathrm{O}\left(n b R^{6}\right)$.

Therefore, the total complexity of Step 2 is upper-bounded by $\mathrm{O}\left(n b R^{6}\right)$.

10.4.3 Computational complexity of Step 3

Recall that $\mathrm{O}\left(n b R^{2}\right)$ is the order of the size of R after Step 2.
We compute the complexity for each pattern:
Pattern 1: Detecting "reflexive" UM-relations " $m()$ use* $m()$ ", where * is ?, ! or \# (i.e. * is not $\%$). It is in the size of $\mathrm{R}: \mathrm{O}\left(n b R^{2}\right)$.

Pattern 2: Detecting two or more UM-relations " $K m R$ " and " L n R", where m is any "modify*" other than "modify\%", and n is any "use*" or "modify*" other than "use\%" and "modify $\%$ ". It is in the square of the size of $\mathrm{R}: \mathrm{O}\left(n b R^{4}\right)$.

Pattern 3: Detecting UM-relation(s) modified in Step 1. It is in the size of $\mathrm{R}: \mathrm{O}\left(n b R^{2}\right)$.

Pattern 4: Detecting UM-relation(s) with restrictions. It is in the size of $\mathrm{R}: \mathrm{O}\left(n b R^{2}\right)$.

Pattern 5: Detecting incompatible UM-relations. Since we have to consider pairs of UM-relations, the complexity is in the square of the size of $\mathrm{R}: \mathrm{O}\left(n b R^{4}\right)$.

Pattern 6: Let $n b M$ and $n b F$ be the numbers of UM-relations specified as mandatory and forbidden, respectively.

Verifying the presence of mandatory UM-relations: for each mandatory UM-relation M, we go through the UM-relations of R to verify the presence of M . Hence, the complexity is at most in $n b M$ multiplied by the size of R , i.e. $\mathrm{O}\left(n b M \times n b R^{2}\right)$.

Verifying the absence of the forbidden UM-relations: for each forbidden UM-relation F, we go through the UM-relations of R to verify the presence of F . Hence, the complexity is at most in $n b F$ multiplied by the size of R, i.e. $\mathrm{O}\left(n b F \times n b R^{2}\right)$.

Hence, the total complexity of Pattern 6 is in $\mathrm{O}\left((n b M+n b F) \times n b R^{2}\right)$.

Typically, the total number $(n b M+n b F)$ of mandatory and forbidden UM-relations is smaller than the size of R , i.e. $\mathrm{O}(n b M+n b F)<\mathrm{O}\left(n b R^{2}\right)$. Therefore, the complexity of Pattern 6 is upper-bounded by $\mathrm{O}\left(n b R^{4}\right)$. Hence, the total computational complexity of the three steps: $\mathrm{O}\left(n b R^{6}\right)$.

References

[1] Bouma, L.G and Velthuijsen, H. (eds), Feature Interactions in Telecom. Systems, IOS Press, Amsterdam (1994).
[2] Cheng, K.E. and Ohta, T. (eds), Feature Interactions in Telecom. Systems III, IOS Press, Amsterdam, (1995).
[3] Dini, P, Boutaba, R. and Logrippo, L. (eds), Feature Interactions in Telecom. Networks IV, IOS Press, Amsterdam (1997).
[4] Kimbler, K. and Bouma, L.G. (eds), Feature Interactions in Telecom. and Software Systems V, IOS Press, Amsterdam (1998).
[5] Calder, M. and Magill, E. (eds), Feature Interactions in Telecom. and Software Systems VI, IOS Press, Amsterdam (2000).
[6] Amyot, D. and Logrippo, L. (eds), Feature Interactions in Telecom. and Software Systems VII, IOS Press, Amsterdam (2003).
[7] Reiff-Marganiec, S. and Ryan, M. (eds), Feature Interactions in Telecom. and Software Systems VIII, IOS Press, Amsterdam (2005).
[8] du Bousquet, L. and Richier, J.L. (eds), Feature Interactions in Software and Communication Systems IX, IOS Press, Amsterdam (2007).
[9] Nakamura, M. and Reiff-Marganiec, S. (eds), Feature Interactions in Software and Communication Systems X. IOS Press, Amsterdam (2009).
[10] Kimbler, K., EURESCOM Project P509 Handling Service Interactions in the Service Life Cycle, Retrieved: April 1, 2011 from http://www.eurescom.de/~publicseminars/1997/IN/P509a (1998).
[11] Chentouf, Z., Detecting OAM\&P Design Defects Using a Feature Interaction Approach, Int. Journal of Network Management, 22(2):95-103 (2012).
[12] Khoumsi, A., Chentouf, Z. and Qasem, S., A High Abstraction Level Approach for detecting Feature Interactions in Web Services, IADIS Int. Conf. e-Society, 2012, Berlin, Germany.
[13] Weiss, M., Esfandiari, B. and Luo, Y., Towards a Classification of Web Service Feature Interactions, Computer Networks 51(2):359-381 (2007).
[14] Weiss, M. and Esfandiari, B., On Feature Interactions among Web Services, Proc. IEEE Int. Conf. on Web Services, 2004, San Diego, California, USA, pp. 88-95.
[15] Bond, G., Cheung, E., Fikouras, I. and Levenshteyn, R., Unified Telecom and Web Services Composition: Problem Definition and Future Directions, Proc. IPTCOMM, 2004, Atlanta, USA.
[16] Kolberg, M. and Magill, E., Detecting Feature Interactions between SIP Call Control Services, Proc. Feature interactions in telecom. and software systems VIII, 2005, Leicester, UK.
[17] Chentouf, Z., Cherkaoui, S. and Khoumsi, A., Service Interaction Management in SIP User Device Using, Feature Interaction Management Language, Proc. NOuvelles TEchnologies de la RÉpartition (NOTERE), 2004, Saïdia, Morocco.
[18] Xu, J., Yu, W., Chen, K. and Reiff-Marganiec, S., Web Services Feature Interaction Detection based on Situation Calculus. Proc. IEEE World Congress on Services, 2010, Miami, Florida, USA, pp. 213-220.
[19] Zhao, Q., Huang, G. and Mei, H., An On-the-fly Approach to Web-based Service Composition, Proc. IEEE Congress on Services Part II, 2008, Beijing, China, pp. 208-209.
[20] Zhao, Q. and Huang, J., Feature Interaction Problems in Web-based Service Composition, Proc. Int. Conf. on feature Interactions (ICFI), 2009, Lisbon, Portugal, pp. 234-241.
[21] Weiss, M. and Esfandiari, B., Offline Detection of Functional Feature Interactions of Web Services, Proc. Montreal Conf. on eTechnologies (MCeTech), 2006, Montreal, Canada, pp. 129-136.
[22] Zhang, J., Su, S. and Yang, F., Detecting Race Conditions in Web Services, Proc. Advanced International Conf. on Telecommunications and Int. Conf. on Internet and Web Applications and Services (AICT/ICIW), 2006, Guadeloupe, French Caribbean.
[23] Thomas, J.P. and Ghinea, G., Modeling of Web Services, Proc. Int. Conf. on E-Commerce (CEC), 2003, Newport Beach, California, USA.
[24] Luo, X. and Dong, R., Detecting Feature Interactions in Web Services with Timed Automata. Proc. Int. Conf. on Genetic and Evolutionary Computing (WGEC), 2009, Guilin, China, pp. 276-279.
[25] Zhang, J., Yang, F. and Su, S., Detecting Feature Interactions in Web Services with Model Checking Techniques, The Journal of China Universities of Posts and Telecom. 14(30):108112 (2007).
[26] Holzmann, G.J., The Model Checker SPIN, IEEE Trans. on Software Eng. 23(5):279-295 (1997).
[27] Andrews, T., Business Process Execution Language for Web Services, Version 1.1, Retrieved: April 1, 2011, from http://www-106.ibm.com/developerworks/library/ws-bpel/ (2003).
[28] Liu, X., Hui, Y., Sun, W. and Liang, H., Towards Service Composition Based on Mashup, Proc. of IEEE Congress on Services, 2007, Salt Lake City, Utah, USA.
[29] Chafle, X., An Integrated Development Environment for Web Service Composition, Proc. IEEE Int. Conf. on Web Services (ICWS), 2007, Salt Lake City, Utah, USA.
[30] Karunamurthy, R. and Khendek, F., A Novel Business Model for Web Service Composition, Proc. IEEE Int. Conf. on Services Computing (SCC), 2006, Chicago, Illinois, USA.
[31] Karunamurthy, R., Khendek, F. and Glitho, R., A Business Model for Dynamic Composition of Telecom. Web Services, IEEE Communications Magazine 22(3): 154-169 (2007).
[32] Booth, D., Web Services Architecture, W3C Working Group Note, Retrieved April 1, 2011 from http://www.w3.org/TR/ws-arch/ (2004).
[33] Karunamurthy, R., Khendek, F. and Glitho, R., Categorizing and Assembling Web Services in a Composition Framework, Proc. IEEE Software Engineering Workshop, 2009, Skövde, Sweden.
[34] Turner, K.J., Formalising Web Services. In Proc. Formal Techniques for Networked and Distributed Systems (FORTE XVIII), 2005, Taipei, Taiwan.
[35] Turner, K.J., Representing and Analyzing Composed Web Services using CRESS, Network and Computer Applications 30(2):541-562 (2007).
[36] Liu, A.X. and Gouda, M.G., Diverse Firewall Design, IEEE Trans. on Parallel and Distributed Systems 19(8):1-15 (2008).

استخدام وتعديل إطار عمل لكثنف النفاعلات ذات الخصوصبة في خدمات الوبب
 أحمد خمسي، وزهير شنتوف

قسم الإلكترونبات وهندسة الحاسبات، جامعة شبيربرو، شيربروك، كندا، و* قسم هندسة البرمجيات، كلية المعلومات وعلوم الحاسبات، جامعة الملك سعود، الرياض، المدلكة العربية السعودية zchentouf@ksu.edu.sa

الدستخلص. إحدى فوائد تركبب خدمات الوبب هي الحصول على خدمات جديدة من خدمات موجودة مسبقًا. ولكن نركيب خدمات الويب قد تكون عرضة لبعض التفاعلات الخاصة والتي تؤدي إلى حدوث تصرفات غير مرغوب فيها عند استخذام أكثر من خدمة ويب مع بعضها البعض. ولقد أضحى معروفًا اليوم أن طرائق اكتثاف التفاعلات ذات الخصوصية تفضي إلى تعقيد يصعب التحكم فيه دون أن يضعف ذلك من قـرتها على اكتثّاف الأخطاء. هدف البحث هو تطوبر طريقة لاكتثاف التفاعلات الخاصة في خدمات الويب والتي تهغف إلى نتليل التققيدات التي يصعب التحكم فيها، بينما نحاول الحفاظ على ققر مقول من اكتشاف الثناعلات ذات الخصوصية. الطريقة المقترحة تعتمد على استخدام لغة جديدة لنمذجة خدمات الويب بمسنوى تجريبي عالي. يقدم نموذج الاستخدام والتعديل لخدمات الوبب معلومات منل "من يستخدم ماذا" و"من يعدل ماذا" ويميز كل عطلية
 يشيران أيضًا إلى كل استخدام وتعديل إذا كانت شروطًا محددة أو غير محدة. درسنا النتقيد الحسابي لطريقتتا لكثف التفاعلات ذات الخصوصية ووضحنا قابليتها للتطبيق في عدة أمنلة.

Feasibility Verification and Performance Evaluation of Exclusion-Based VANETs (EBV)

Ahmad A. Al-Daraiseh, Mohammed A. Moharrum*, and Ahmed Youssef
Department of Information Systems, King Saud University, and *Deanship of Scientific Research, Al Imam Muhammed Ibn Saud Islamic University, Riyadh, Saudi Arabia
adaraiseh@ksu.edu.sa

Abstract

Vehicular Ad-hoc NETworks (VANETs) are wireless networks that help improve driving efficiency and safety. VANETs provide a wide range of road services such as detecting traffic congestion, finding alternative routes, estimating time to destination, collision warning and many others. One of the biggest challenges in deploying VANETs is how to successfully address their security issues. These issues are mainly due to conflicting security requirements such as privacy and linkability. Exclusion-Based VANETs (EBV) was proposed as a generic framework to resolve some of VANETs' security issues. In this paper, we verify the feasibility and evaluate the performance of EBV through a set of simulation experiments. We measure time taken to deliver messages, packet loss, and average throughput. The results showed that EBV is competitive to other protocols in terms of efficiency and cost.

Keywords: VANETs, Exclusion-Based System (EBS), Security, PKI.

1. Introduction

Vehicular Ad-hoc NETworks (VANETs) are special version of Mobile Ad hoc Networks (MANETs) used within vehicles as well as other facilities to improve traffic management. In VANETs, each vehicle is equipped with a wireless On-Board Unit (OBU) that allows the vehicle to communicate with other vehicles or with Road Side Units (RSUs) through short range wireless communication. VANETs communication
may be classified as either vehicle to vehicle (V-V) or vehicle to infrastructure (V-I) communication. Several types of VANETs applications have been proposed in the literature. Examples of these applications are safety ${ }^{[1]}$, entertainment ${ }^{[2]}$, and information sharing applications ${ }^{[3]}$. A recent comprehensive survey on VANETs can be found in ${ }^{[10,38,41]}$.

Securing VANETs implies different requirements including message integrity and authentication, vehicle privacy and confidentiality, non-repudiation, and short term linkability for investigation purposes. In addition, most applications, especially safety applications, require almost real-time message processing to satisfy application requirements. Providing security to VANETs applications is a very challenging task that has been widely explored in the last decade. The challenge lies in how to satisfy conflicting security requirements such as privacy on one side and linkability on the other side. Mobility with limited processing capabilities of installed hardware is another issue that needs to be addressed.

Key management is a main issue in securing VANETs. Despite the fact that Public key Infrastructure (PKI) is very successful in many applications, we believe that PKI alone might not be able to fulfill all the security requirements exist in VANETs under different conditions. Consider, for example, a transmission range of 150 m (i.e. 300 diameters) and heartbeat message frequency of 10 Hz , as suggested in ${ }^{[4]}$. Under these conditions, number of messages, Certificate Revocation List (CRL) size, and the hardware limitations represent major obstacles that render developing a secure architecture for VANETs application a dilemma.

In our previous work ${ }^{[5]}$, we proposed Exclusion-Based VANETs (EBV), a generic framework for VANETs that uses a combination of PKI and symmetric key management to resolve some VANETs security issues. In this paper, we verify the feasibility of EBV and evaluate its performance through a set of simulation experiments. We've taken measure time to deliver messages, packet loss, and average throughput.

The rest of this paper is organized as follows: in section 2, we present some related work. In section 3, we review EBV structure and operations. In section 4, we evaluate EBV performance through a set of simulation experiments and report our results. Finally, in section 5, we give our conclusions and future work.

2. Related Work

The Elliptic Curve Digital Signature Algorithm (ECDSA) for signatures is used in the current IEEE 1609.2 standard for secure VANETs communications to verify messages ${ }^{[2]}$. Prior work has shown that the verification of single ECDSA signature requires 7 ms of computation on proposed On Board Unit (OBU) hardware ${ }^{[8]}$. An efficient alternative to signatures is TESLA authentication technique ${ }^{[6]}$. In TESLA, symmetric cryptography with delayed key disclosure is used to provide the necessary asymmetry to prove that the sender was the source of the message. However, TESLA suffers from vulnerability to memorybased DoS attacks. A hybrid authentication mechanism was proposed $\mathrm{in}^{[7]}$ which combines VANETs authentication using ECDSA signatures and TESLA++ (VAST) and provides the advantages of both of them.

Many solutions have been suggested to address the security issues in VANETs. The authors in ${ }^{[10]}$ classified VANET security schemes into PKI-based schemes and non PKI-based schemes. They provided a comparison between the two different schemes in terms of efficiency, scalability, authenticity, integrity, short term linkability, privacy and nonrepudiation. In $^{[9]}$ the authors identified two categories of VANETs security solutions: PKI and the ID-Public Key Cryptosystem (ID-PKC). In PKI solutions, group signature is used as a cryptographic basis to achieve security requirements. For efficiency and scalability reasons, PKI based systems are combined with other cryptographic based systems, such as ID based cryptography. In the following two sub-sections, we review the previous work in the two categories and determine how each category meets the security requirements.

2.1 PKI proposals

There have been several proposals for achieving security requirements in VANETs based on PKI. There are early schemes ${ }^{[11]}$ and ${ }^{[12]}$ and more advanced schemes which may be classified as either with pseudonyms ${ }^{[13-16]}$ or group signature ${ }^{[9,}{ }^{17-20]}$. Pseudonyms have been used to protect the real identity of the vehicles. Using pseudonyms requires vehicles to store a large number of pseudonyms and certificates, where it is not convenient to implement a revocation scheme to revoke the malicious vehicle. Moreover, the pure pseudonym schemes do not support the secure functionality of authentication, integrity, and nonrepudiation.

Traditional digital signature scheme, where a vehicle stores a very
large number of public/private key pairs; has been proposed in ${ }^{[20]}$ to address the privacy issue in VANETs. To achieve both message authentication and anonymity, the authors ${ }^{[20]}$ proposed that each vehicle should be preloaded with a large number of anonymous public and private key pairs and the corresponding public key certificates. The authors in ${ }^{[21]}$ introduced a group signature scheme to sign each message. In this scheme, each vehicle has its own private key and all group members share one public key. The work in ${ }^{[22]}$ combines pseudonym schemes with group signature to avoid storing pseudonyms and certificates in vehicles.

Although the work described above provides strong security features such as authentication, non-repudiation, and confidentiality, they are not likely to be widely available because they require extra communication for the maintenance of public key certificates and for the management of CRLs. For these critical drawbacks, researchers investigated the use of other cryptographic schemes to be combined with PKI-based solutions.

2.2 ID-PKC proposals

ID-Public Key Cryptosystem (ID-PKC) ${ }^{[7]}$ have been introduced $\mathrm{in}^{[9,23-25]}$. In such cryptosystem, the user's information, such as phone number and e-mail address, can be used as a public key for verification and encryption. In other words, the ID-based cryptosystem simplifies the certificate management process. Kamat et al ${ }^{[23]}$ proposed an ID-based security framework for VANETs. They use the ID-based signcryption scheme to provide authentication, confidentiality, message integrity, nonrepudiation and pseudonymity. $\mathrm{In}^{[26]}$ the authors discussed approaches to prevent vehicles from fabricating their position information. Sun et al ${ }^{[25]}$ presented a security framework that assures privacy using the preloading pseudonym and non-repudiation through an ID-based threshold signature scheme. Lin et al ${ }^{[9]}$ proposed the RSUaided certificate revocation scheme. $\mathrm{In}^{[24]}$, the authors proposed SECSPP, a secure and efficient communication scheme based on non-interactive ID-based public-key cryptography, blind signature, and one-way hash chain.

Unfortunately, in all previous security frameworks, the private/public keys of VANET nodes are assigned by the Key Generation Center (KGC), which causes inherent weaknesses such as key escrow. The key escrow problem implies that: since the KGC issues their private
keys using the master key, it may decrypt or sign any message ${ }^{[37]}$. This cannot guarantee strong non-repudiation and private communication because the KGC can sign and decrypt any message and abuse its accessibility. $\mathrm{In}^{[27]}$, Zhang, et al., proposed RAISE in which Vehicles generate a shared symmetric key with the RSU using a Diffie-Hellman key agreement protocol. RSUs then become responsible for verifying the authenticity of the messages sent by vehicles. RAISE addressed the issue of VANETs scalability and communication overhead in case of large traffic intensity.
$\mathrm{In}^{[28]}$ the authors proposed a security architecture to handle key escrow, in which a vehicle updates its private and public keys, and sends them to Road Traffic Utility (RTA) to be verified. The RTA generates the vehicle's new signature and sends it back. $\mathrm{In}^{[29]}$, the authors propose the use of certificate-based cryptography as a hybrid approach to combine the advantages of ID-based cryptography as well as the PKI approach. Several proposals were introduced on secure beaconing. In ${ }^{[30]}$, the authors proposed the usage of radar device attached to the front and the back of the vehicle in addition to a GPS receiver. $\operatorname{In}^{[10]}$, the authors studied existing security protocols, and they concluded that a main drawback is the lack of practical feasibility because of network overhead.

Recently, S. Junggab et al ${ }^{[39]}$ introduced the first VANET cloud architecture. They also, identified the unique security issues and challenges when utilizing the cloud. A. Nikolaos et al ${ }^{[40]}$ utilized tickets as cryptographic tokens to comply with vehicular communication standards yet preserve the privacy of the vehicle. D. Kevin et al ${ }^{[42]}$ proposed the use of a tree like structure and called multi-level security architecture for VANETs. In this work when a node is attacked the parent node will deactivate the attacked node and redistribute the keys in that area.

3. EBV Structure and Operation

$E B V^{[5]}$ is a novel framework that utilizes Exclusion-Based System (EBS) $)^{[31-33]}$, Advanced Encryption Standard (AES) and PKI to create a robust, efficient, and scalable security solution for VANETs. In our previous work EBV ${ }^{[5]}$, we utilized Exclusion Based System EBS , which was originally developed and tested for both security and efficiency in ${ }^{[31]}$. It was used further as a basis for several ad-hoc and sensor network key management in several papers, examples include ${ }^{[32,33]}$.

Our proposed EBV consists of the following hierarchically organized entities (Fig. 1.):

- Global VANET Authority (GVA): a trusted party that registers and manages CVAs, run by an international cooperation.
- Country VANET Authority (CVA): trusted country wide authority that registers all country's RVAs, run by national DMV.
- Regional VANET Authority (RVA): a trusted regional authority that manages an EBS system in a specific region (could be a city or a state), run by regional DMV.
- Road Side Unit (RSU): a node in VANETs that relays messages between vehicles and RVAs and vice versa.
- Vehicles: normal vehicles and special ones (e.g., Police and emergency vehicles).

Fig. 1. EBV structure.
EBV framework resists several types of attacks including bogus information, unauthorized preemption, message replay and modification, impersonation, RSU relocation, movement tracking, impersonating an RSU, malicious vehicle, brute force, and illusion attacks ${ }^{[5]}$. The operation of EBV has three main phases which are described below.

3.1 Initialization and Registration Phase

When an RVA is deployed, it calculates a canonical matrix $\mathrm{A}[\mathrm{k}+\mathrm{m}$, $\mathrm{C}(\mathrm{k}+\mathrm{m}, \mathrm{k})]$ with a large number of columns (i.e. larger than the number of vehicles expected in this region in the next 100 years). When choosing integers k and m an RVA preserves the following:

- The number of keys $($ i.e. $\mathrm{k}+\mathrm{m})$ is kept small. $58(8+50)$ was used in the simulation generating a reasonable matrix of around 2 billion entries.
- m should be large enough (i.e. the number of vehicles an attacker needs
to attack to reveal all keys of the group should be very large).
RVA initially loads every vehicle and RSU with the following items:
- 10-Digit vehicle identifier (VID, RSUID in case of RSU) allows for 10 billion different vehicles/RSUs.
- KGF a one-way trapdoor Key Generation Function. MD5 was used.
- 128bit session key S_{n}, the current key in this area and its sequence number (SKSN 2Byte).
- A set of 8 administrative keys 128 bit each generated by RVA. RVA maps every vehicle ID to a column in the matrix A, as well as, to the real identity of the vehicle.
- A bit string (BSV) of 58 bits that represents the column from matrix A assigned to this specific vehicle V , where a 1 means the vehicle has the key.
- RVA's Public key $\left(\right.$ RVA $\left._{e}\right)$ and Product value N. (RSA 1024bit is used)
- Previous session key's sequence number.
- Previous key update message.

3.2 Normal Operation Phase

In EBV, the following events could occur in normal operation phase:
a) $\mathbf{B}_{\text {msg }}$ Exchange

Every vehicle and RSU use the current session key $\left(\mathrm{S}_{\mathrm{n}}\right)$ to securely communicate beacons. The proposed message format is shown in Fig. 2.

8B	2B	8 B	8 B	2 B	0.5 B	21.5 B
TS	SKSN	X pos	Y pos	Speed	Direction	Application Specific Info

Fig. 2. Proposed 50byte message format.
To provide a $\mathrm{B}_{\mathrm{msg}}$ with integrity, authenticity, non-repudiation, and linkability by RVA, a message (MSG) is attached to a signature-like string before sending it as follows:
Get a 16B hash of MSG using MD5 function:

$$
\begin{equation*}
M S G_{\text {Hash }}=M D 5(M S G) \tag{1}
\end{equation*}
$$

Get a 16B hash of all eight admin keys, $\left(\mathrm{K}_{1}, \ldots, \mathrm{~K}_{8}\right)$, concatenated:

$$
\begin{equation*}
K_{\text {Hash }}=\operatorname{MD5}\left(K_{l}\left|K_{2}\right| K_{3}\left|K_{4}\right| K_{5}\left|K_{6}\right| K_{7} \mid K_{8}\right) \tag{2}
\end{equation*}
$$

XOR $\mathrm{MSG}_{\text {Hash }}$ and $\mathrm{K}_{\text {Hash }}$:

$$
\begin{equation*}
X O R_{\text {Hash }}=M S G_{\text {Hash }} \wedge K_{\text {Hash }} \tag{3}
\end{equation*}
$$

Append vehicle ID (VID) to $\mathrm{XOR}_{\text {Hash }}$:

$$
\begin{equation*}
\text { plainSig }=X O R_{\text {Hash }} \mid V I D \tag{4}
\end{equation*}
$$

Use RVA's public key RVA e $_{e}$ to RSA encrypt plainSig:

$$
\begin{equation*}
S I G=R S A_{\text {RVAe }} \text { (plainSig) } \tag{5}
\end{equation*}
$$

Use AES and Sn to encrypt MSG as follows:

$$
\begin{equation*}
e n c M S G=A E S_{-} E N C_{S n}(M S G) \tag{6}
\end{equation*}
$$

A vehicle creates a heartbeat message ($\mathrm{B}_{\text {mss }}$) by concatenating a Time Stamp (TS), a Sequence Number of the current session key SKSN, encMSG and SIG, as follows:

$$
\begin{equation*}
B_{m s g}=T S|S K S N| \text { encMSG } \mid S I G \tag{7}
\end{equation*}
$$

Upon receiving a $\mathrm{B}_{\mathrm{msg}}$, a vehicle checks TS , if within application's acceptable limits, it checks to see if SKSN is current. If correct, it uses its session key S_{n} to decrypt the message.

$$
\begin{equation*}
\text { PlainMsg }=A E S_{-} D E C_{S n}(\text { encMSG }) \tag{8}
\end{equation*}
$$

If the decrypted TS and SKSN match the plain ones, it means an owner of S_{n} only could have generated the message. It then forwards the data to the installed application/s. The signature SIG will be ignored by receiving vehicles.

b) Updating session key

The session key, S_{n}, is changed regularly to prevent statistical attacks. The new key $\mathrm{S}_{\mathrm{n}+1}$ will be sent out through RSUs to all vehicles encrypted as follows:

$$
\begin{equation*}
A E S_{-} E N C_{S n}\left(S_{n+1}\right)\left|R V A_{S_{\text {Signature }}}\right| R V A_{\text {certificate }} \tag{9}
\end{equation*}
$$

Where RVA signature and certificate are standard RSA's. A receiving vehicle would use RVA's (e, N) to verify the attached signature. If valid, a vehicle would use AES_DEC sn to decrypt the new session key $\mathrm{S}_{\mathrm{n}+1}$ and increment SKSN, otherwise it would ignore the message. If used, the message will be stored until the next update occurs.

c) Key request

If a vehicle V has been away from the network for long time, it might miss more than one key update message. It will realize this when receiving at least $10 \mathrm{~B}_{\text {msg }}$ from different vehicles where:

$$
S K S N \text { of } B_{m s g}<>(V ' s ~ S K S N) \& \& S K S N \text { of } B_{m s g}<>(V \text { 's } S K S N+1) \text { Mod } 65535 \text { (10) }
$$

V will stop sending $\mathrm{B}_{\mathrm{msg}}$ s to save bandwidth (BW). As soon as V receives a $\mathrm{B}_{\mathrm{msg}}$ from an RSU, it will send a Request for Key message ($\mathrm{RK}_{\mathrm{msg}}$). In a Diffie-Hellman like style, it creates an RSA public V_{e}, private V_{d} key pair, a product V_{n} and a random request identifier RID (these are created offline to save time), then, it uses RVA's (e,N) to encrypt the message as follows:

$$
\begin{equation*}
R_{m s g}=R S A_{R V A e}\left(V I D|R I D| V S_{n}\left|V_{e}\right| V_{n}\right) \tag{11}
\end{equation*}
$$

Where VS_{n} is the session key of V .

$$
\begin{equation*}
R_{\text {hash }}=\operatorname{MD5}\left(R_{m s g}\left|K_{l}\right| K_{2} \ldots \mid K_{k}\right) \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
R K_{m s g}=R_{m s g} \mid R_{\text {hash }} \tag{13}
\end{equation*}
$$

The message is broadcasted and then forwarded by the RSU to the RVA. RVA uses its private key $\mathrm{RVA}_{\mathrm{d}}$ to verify the message as follows:

$$
\begin{equation*}
\text { plainMsg }=R S A_{R V A d}\left(R_{m s g}\right) \tag{14}
\end{equation*}
$$

Based on VID and VS_{n}, it gets the k keys of the vehicle that existed when Vs was in use from a key repository it has (remember that some of the k keys might have been modified when the vehicle was away). Then, it regenerates the signature $\mathrm{R}_{\text {hash }}$ using the keys it retrieved from the matrix as follows:

$$
\begin{equation*}
R_{\text {hash } l}=\operatorname{MD5}\left(R_{m s g}\left|K_{l}\right| K_{2} \ldots \mid K_{m}\right) \tag{15}
\end{equation*}
$$

If $\mathrm{R}_{\text {hash } 1}=\mathrm{R}_{\text {hash }}$, then the vehicle is authentic. Otherwise RVA ignores the message. If authentic and VID was not revoked, RVA creates a reply message $R R K_{\text {msg }}$ and sends it to the RSU that forwarded $\mathrm{RK}_{\mathrm{msg}}$ as follows:

$$
\begin{align*}
& e n c R K_{m s g}=R S A_{V e}\left(S_{n}|S K S N| K_{l}|\ldots| K_{m}^{\prime}\right) \tag{16}\\
& R R K_{m s g}=R I D \mid \text { encRK } K_{m s g}\left|R V A_{\text {signature }}\right| R V A_{\text {certificate }} \tag{17}
\end{align*}
$$

Where S_{n} and SKSN are the current session key and its sequence number, and ($\mathrm{K}_{1}|\ldots.| \mathrm{K}_{\mathrm{m}}$) are V's current admin keys. The originator RSU will broadcast $\mathrm{RRK}_{\mathrm{msg}}$. If received by the requesting vehicle that checks RID to make sure this reply is intended to it, it then uses RVA's (e, N) to verify the attached signature and uses V_{d} to decrypt the message

$$
\begin{equation*}
\text { plainMsg }=R S A_{V d}\left(e n c R K_{m s g}\right) \tag{18}
\end{equation*}
$$

It then updates the keys where it has by replacing the old ones with the new ones.
d) Rekey process

RVA may decide that a certain vehicle needs to be evicted which based on a strong evidence where it has (getting the evidence is outside the scope of this paper). RVA starts a rekey process in the region, where all keys are known to the evicted vehicle X that will be modified by every other vehicle. Table1 shows a possible distribution of X's eight keys $\mathrm{K}_{\mathrm{e} 1}$ to $\mathrm{K}_{\mathrm{e} 8}$ and its bit-string BSX as stored in RVA to make things clearer.

The process starts by RVA issuing a new session key $\mathrm{S}_{\mathrm{n}+1}$ and eight admin keys to replace the keys into vehicle X that knows. i.e. K_{el} through $\mathrm{K}_{\mathrm{e} 8}$. The other $\mathrm{m}=50$ keys, K_{1} through K_{m} Stay the same.

Table 1. A possible distribution of vehicle X 's k keys along with its bit-string as stored in RVA.

$\mathrm{K}_{\text {index }}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
K or Ke	K1	K2	K3	K4	K5	Kel	K6	K7	K8	K9	Ke2	K10	K11	K12	K13
BSX	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0
$\mathrm{K}_{\text {index }}$	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
K or Ke	K14	K15	K16	Ke3	K17	K18	K19	K20	Ke4	K21	K22	K23	K24	K25	K26
BSX	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0
$\mathrm{K}_{\text {index }}$	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
K or Ke	K27	K28	Ke5	K29	K30	K31	K32	K33	K34	K35	K36	K37	K38	Ke6	K39
BSX	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0
$\mathrm{K}_{\text {index }}$	46	47	48	49	50	51	52	53	54	55	56	57	58		
K or Ke	K40	K41	K42	K43	Ke7	K44	K45	K46	K47	K48	K49	Ke8	K50		
BSX	0	0	0	0	1	0	0	0	0	0	0	1	0		

RVA generates replacement keys by repeating the following operation k times once for each key:

$$
\begin{equation*}
K_{e i}=\operatorname{MD5}\left(S_{n+1} \mid K_{e i}\right) \tag{19}
\end{equation*}
$$

RVA broadcasts the Rekey message, by broadcasting X's bit-string (BSX) in a message composed of the following m parts:

$$
\begin{equation*}
\text { Part }_{i}=K_{\text {index }} \mid A E S_{-} E N C_{K i}\left(S_{n+1}\right) \tag{20}
\end{equation*}
$$

where $1<=\mathrm{i}<=\mathrm{m}=50$, and $\mathrm{K}_{\text {index }}$ is the absolute index of K_{i} as shown in Table1. In this Part ${ }_{i}$ we are sending the new session key $\mathrm{S}_{\mathrm{n}+1}$ encrypted using one of the m keys $\left(\mathrm{K}_{\mathrm{i}}\right)$ which vehicle X doesn't have. We are attaching the absolute index of the key K_{i} to make it easier for receiving vehicles to know which key to use to decrypt this part.
After generating 50 Parts, the message ReKey $_{\text {msg }}$:

Upon receiving the message, Each RSU broadcasts the message on behalf of the RVA.

After verifying a received message, a vehicle uses S_{n} to decrypt the first level of encryption and extract BSX and m Parts:

$$
\begin{equation*}
\text { plainMsg }=A E S_{-} D E C_{S n}(M) \tag{22}
\end{equation*}
$$

Where M = AES_ENC ${ }_{\text {Sn }}$ (BSX \mid Part $_{1} \mid$ Part $_{2}|\ldots$.$| Part _{\mathrm{m}}$).
A vehicle checks BSX to see if it shares any keys with the evicted vehicle. If so, it continues to decrypt the jth Part with K_{j}, any of its k keys:

$$
\begin{equation*}
\text { plainPart }_{j}=A E S_{_} D E C_{K j}\left(\text { Part }_{j}\right) \tag{23}
\end{equation*}
$$

Once it decrypts any of the m Parts, it updates its session key S_{n} and uses it to replace all the keys it shares with vehicle X according BSX, by executing operations similar to (19). Every vehicle should store the rekey message it receives until the next eviction or periodic change of S_{n} occurs.

e) Forwarding key update message:

If a vehicle A that has a current session key S_{n} is met with another vehicle B that uses the previous session key $\mathrm{S}_{\mathrm{n}-1}$, all A has to do is to replay the stored session key or Rekey message it stores. If the vehicle B possess $\mathrm{S}_{\mathrm{n}-1}$ and is not revoked, it should be able to update its keys as described in updating a session key or in the rekey sections above.

3.3 Crossing Boarders Phase

When a vehicle from region R_{1} approaches another region R_{2}, it follows a procedure identical to that of a Key Request described above. The receiving RSU in R_{2} relays the message to its RVA (i.e., RVA_{2}) that manages $\mathrm{R} 2 . \mathrm{RVA}_{2}$ sends the message to RVA_{1} to make sure that the vehicle is not revoked and if so to get the message's plain text (only RVA_{1} knows how to decrypt the message). Upon receiving the reply from $\mathrm{RVA}_{1}, \mathrm{RVA}_{2}$ checks to see if this vehicle has a record in its matrix. If not, it registers the vehicle then it uses an identical technique to respond to the vehicle as described above. Otherwise, a reply message is directly constructed and sent. This phase was not simulated due to limitations in the software packages used and was left for future work.

4. Simulation Results

To our knowledge, EBV is the first utilization of EBS in VANETs, and hence, comparison with other models in many aspects was not an option. To verify EBV's feasibility, we decided to start by a simple simulation that uses one straight highway with one entrance and one exit. In our simulation we used NS3 in conjunction with VANET-Highway Package (VHP) ${ }^{[34]}$. VHP utilizes NS3 and provides traffic simulation capabilities; so that no external traffic traces are needed. In the following sub-sections, we explain the simulation parameters we used and report the simulation results.

4.1 Simulation Parameters

To carry out the simulation of EBV, we had to modify the following classes from the VHP: Controller, Highway, and Vehicle class.

These classes were modified to support EBV encryption and decryption. We also created the following new classes:

- AESEncryption: a class used to allow symmetric encryption/decryption.
- MDHashing: a class that implements MD5 hashing.
- RSAEncrDecr: a class used to allow RSA encryption/decryption.
- RoadSideUnit: a class that works as an RSU in an EBV system.
- RvaEbs: a class that works as an RVA in an EBV system.

All experiments were carried out on a Dell Latitude laptop with 2.53 GHz Core 2 Duo CPU and 4GB RAM. Simulation parameters were as follows:

- Highway: One-way, three lanes, 2.4 Km in length.
- RSUs: Three RSUs located at $400 \mathrm{~m}, 1200 \mathrm{~m}$ and 2000 m . RSU_{1} acts as an RVA to the system.
- Vehicles: 80% sedan, 20% truck, all equipped with wi-fi devices 250 400 m range, speed up to $29 \mathrm{~m} / \mathrm{s}$.
- Traffic flow and gap between vehicles : variable
- RVA: updates session key every 15 s and randomly revokes a vehicle every 27s.
- $\mathrm{B}_{\text {msg }}$ frequency: every $0.1-0.3 \mathrm{~s}$ random.
- Encryption/decryption: 128bit symmetric and 1024bit RSA.
- Simulation time: 300s

The simulation was repeated 300 times and an average of each measured value was considered.

4.2 Simulation Results

The results of our simulation were very promising. In our first experiment, we measured the time it takes a vehicle to do each of the following actions:

- Encrypt/decrypt a $\mathrm{B}_{\text {msg }}$.
- Create/verify a $\mathrm{B}_{\text {msg }}$ signature.
- Create/extract Keyupdate message.

The results are shown in Table 2 below.

Table 2. EBV TIME MEASUREMENTS.

	Bmsg		Bmsg Sig		Keyupdate message	
	Encrypt	Decrypt	Create	Verify	Create	Verify
Time ms	0.125	0.27	0.075	3.18	8	0.55

It is very obvious that the time needed to do all operations in the OBU is quite small. In fact an OBU needs to receive from 740 vehicles sending $5 \mathrm{~B}_{\mathrm{msg}} / \mathrm{s}$ to stay busy all the time. It was reported in ${ }^{[35]}$ that signing/verification using 1024 -RSA onboard requires $52 / 0.8 \mathrm{~ms}$, it is clear that our technique is well below in signing and slightly higher in verifying. On a similar hardware J. Hass ${ }^{[6]}$ reported that signing/verification of ECDSA took around $1.5 / 1.8 \mathrm{~ms}$ and for TESLA around 10μ s to verify. Notice that the largest two measurements (3.18 and 8 ms) are done only by an RVA. We believe that OBU hardware should be at least equal to that we are using in these experiments.

To make sure that a key update message is distributed within a reasonable time, we performed our second experiment. We monitored all vehicles on the road after sending such message and recorded the average time it takes until all vehicles on the road are updated with new keys. We did this with different traffic intensities on the road and the results are shown in Fig. 3.

Fig. 3 shows that the maximum time to deliver keys to all vehicles on the road was around 0.25 s , and the minimum was 0.1 s . It is interesting to see that the time was higher at lower vehicle intensity. We believe that this was due to the forwarding mechanism we implemented. The higher the number of vehicles on the road gives more chance for this mechanism to be utilized. It was reported in ${ }^{[36]}$ that the time required to distribute a CRL to 175 vehicles with best used technique was more than 25 s . It is obvious that EBV revokes a vehicle in less than 0.5 s . Also ${ }^{[6]}$ reported that distributing a CRL to all vehicles in his simulation took well over 1000s with the best used technique.

Fig. 3. Time to Deliver Key updates Messages.
In the third experiment, we try to make sure that sending Bmsgs at such a high rate regardless of vehicle intensity does not consume too much bandwidth (BW). We measured the used BW for different vehicle intensities and the results are shown in Fig. 4. The results were as expected and the BW used increased almost linearly as the number of vehicles increased. The BW maxed out at less than 3 Mbps when the number of vehicles was a little more than 170.

Fig. 4. Average Throughput Change with the Number of Co-existing Vehicles
To check the effect of traffic intensity on loss ratio, we performed our fourth experiment. We measured the loss ratio at different traffic intensities. Fig. 5 shows that when the number of vehicles was 25 a loss ratio was around 4% and when the number of vehicles was 175 , the loss was less than 6%. Although we don't have much in common with ${ }^{[25]}$, our traffic intensities are very close. A comparison between our results and a reconstructed curve from ${ }^{[25]}$ shows that our system tends to have higher
values for low intensities but for higher intensities our system gives better results.

Fig. 5. Packet loss ratio vs traffic intensity.
Time and space complexities are not discussed in this paper because it only deals with simulating EBV and the simulation results. The readers are advised to check the works at ${ }^{[5,31-33]}$ for algorithmic analysis.

5. Conclusions

Key and CRL management in VANETs is a very difficult and time consuming task. While many proposed frameworks for VANETs achieve security, we believe they will not be adopted because of suffering any or a combination of: Certificate revocation list management, large computation time, large communication overhead, lack of scalability, or inability to defend some of the attacks.

In this paper, we tried to verify the feasibility of EBV (previously proposed by the authors) and study its efficiency through simulation using NS3. Our simulation experiments studied delivery time, throughput, and packet loss ratio under different numbers of vehicles and distances. Although a comparison to other protocols was very hard to do because of the different architecture and simulation tools and scenarios, our results shows competitiveness of EBV to other existing protocols considering both computation cost and efficiency.

We believe that our framework needs a full scale simulation, which considers real/artificial road maps with real/artificial traffic traces to be
able to compare to other existing solutions. Another future work issue is to utilize DSRC instead of wi-fi as it has been set as a standard.

References

[1] C. L. Robinson, L. Caminiti, D. Caveney, and K. Laberteaux, "Efficient coordination and transmission of data for cooperative vehicular safety applications," in Proceedings of the 3rd international workshop on Vehicular ad hoc networks Los Angeles, CA, USA: ACM, 2006.
[2] C. E. Palazzi, "Fast Online Gaming over Wireless Networks." vol. Doctor of Philosophy in Computer Science Los Angeles: University of California, 2007.
[3] T. Kitani, T. Shinkawa, N. Shibata, K. Yasumoto, M. Ito, and T. Higashino, "Efficient VANET-Based Traffic Information Sharing using Buses on Regular Routes," in Vehicular Technology Conference, 2008. VTC Spring 2008. IEEE, 2008, pp. 3031-3036.
[4] V. S. Communications, "Vehicle safety communications project-final report," 2006.
[5] A. A. Al-Daraiseh and M. A. Moharrum, "Exclusion Based VANETs (EBV)," in Secure and Trust Computing, Data Management and Applications. vol. 186: Springer Berlin Heidelberg, 2011, pp. 96-104.
[6] J. J. Haas, H. Yih-Chun, and K. P. Laberteaux, "Real-World VANET Security Protocol Performance," in Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, 2009, pp. 1-7.
[7] A. Studer, F. Bai, B. Bellur, and A. Perrig, "Flexible, Extensible, and Efficient VANET authentication," in in 6th Conference on Embedded Security in Cars (Escar) Hamburg, Germany, March 2008, p. 22.
[8] R. Maxim and H. Jean-Pierre, "The Security of Vehicular ad hoc Networks," in Proceedings of the 3rd ACM workshop on Security of ad hoc and sensor networks Alexandria, VA, , 2005, pp. Pages: 11-21.
[9] L. Xiaodong, L. Rongxing, Z. Chenxi, Z. Haojin, H. Pin-Han, and S. Xuemin, "Security in vehicular ad hoc networks," IEEE Communications Magazine, vol. 46, pp. 88-95, Feb. 2008.
[10] M. A. Moharrum and A. Al-Daraiseh, "Toward Secure VANETs: A Survey," IETE Technical Review", vol. 29, Issue 1, pp.80-89, 2012.
[11] K. Sampigethaya, L. Huang, M. Li, R. Poovendran, K. Matsuura, and K. Sezaki, "CARAVAN: Providing Location Privacy for VANET," in 3rd International Workshop on Vehicular ad hoc Networks, Cologne, September 2006.
[12] S. Amit Kumar and B. J. David, "Modeling mobility for vehicular ad-hoc networks," in Proceedings of the 1st ACM international workshop on Vehicular ad hoc networks Philadelphia, PA, October 2004.
[13] A. R. Beresford and F. Stajano, "Mix zones: user privacy in location-aware services," in Pervasive Computing and Communications Workshops, 2004. Proceedings of the Second IEEE Annual Conference on, 2004, pp. 127-131.
[14] M. Gerlach and F. Guttler, "Privacy in VANETs using Changing Pseudonyms - Ideal and Real," in IEEE 65th Vehicular Technology Conference, VTC, Dublin April 2007, pp. 25212525.
[15] G. Philippe, G. Dan, and S. Jessica, "Detecting and correcting malicious data in VANETs," in Proceedings of the 1st ACM international workshop on Vehicular ad hoc networks Philadelphia, PA, USA: ACM, 2004.
[16] M. Raya, P. Papadimitratos, and J. P. Hubaux, "Securing Vehicular Communications," IEEE Wireless Communications, , vol. 13, pp. 8-15, October 2006
[17] M. Franklin, D. Boneh, X. Boyen, and H. Shacham, "Short Group Signatures," in Advances in Cryptology - CRYPTO 2004. vol. 3152: Springer Berlin / Heidelberg, 2004, pp. 227-242.
[18] G. Jinhua, J. P. Baugh, and W. Shengquan, "A Group Signature Based Secure and Privacy-Preserving Vehicular Communication Framework," in Mobile Networking for Vehicular Environments, Anchorage, ALASKA,, May 2007, pp. 103-108.
[19] H. Leping, K. Matsuura, H. Yamane, and K. Sezaki, "Enhancing wireless location privacy using silent period," in IEEE Wireless Communications and Networking Conference, , Nokia Res. Center Japan, Tokyo, Japan May 2005, pp: 1187-1192.
[20] M. Raya and J.-P. Hubaux, "Securing vehicular ad hoc networks," Journal of Computer Security, vol. 15, pp: 39-68, 2007.
[21] L. Xiaodong, S. Xiaoting, H. Pin-Han, and S. Xuemin, "GSIS: A Secure and PrivacyPreserving Protocol for Vehicular Communications," IEEE Transactions on Vehicular Technology, , vol. 56, pp: 3442-3456, November 2007.
[22] C. Giorgio, P. Panos, H. Jean-Pierre, and L. Antonio, "Efficient and robust pseudonymous authentication in VANET," in Proceedings of the fourth ACM international workshop on Vehicular ad hoc networks Montreal, Quebec, Canada: ACM, 2007.
[23] K. Pandurang, B. Arati, and T. Wade, "An identity-based security framework For VANETs," in The Proceedings of the 3rd international workshop on Vehicular ad hoc networks, Los Angeles, CA, , September 2006.
[24] C.-T. Li, M.-S. Hwang, and Y.-P. Chu, "A secure and efficient communication scheme with authenticated key establishment and privacy preserving for vehicular ad hoc networks," Computer Communications, vol. 31, pp: 2803-2814, Jan. 2008.
[25] J. Sun, C. Zhang, and Y. Fang, "An ID-based Framework Achieving Privacy and NonRepudiation in Vehicular Ad Hoc Networks," in IEEE Military Communications Conference, MILCOM Orlando, FL, , Oct. 2007, pp: 1-7.
[26] L. Tim, ller, M. Christian, fer, S. Elmar, and K. Frank, "Improved security in geographic ad hoc routing through autonomous position verification," in Proceedings of the $3 r d$ international workshop on Vehicular ad hoc networks Los Angeles, CA, USA: ACM, 2006.
[27] Z. Chenxi, L. Xiaodong, L. Rongxing, and H. Pin-Han, "RAISE: An Efficient RSU-Aided Message Authentication Scheme in Vehicular Communication Networks," in IEEE International Conference on Communications, Beijing, May 2008, pp: 1451-1457.
[28] J. Choi and S. Jung, "A Security Framework with Strong Non-Repudiation and Privacy in VANETs," in Consumer Communications and Networking Conference, 2009. CCNC 2009. 6th IEEE, 2009, pp. 1-5.
[29] Xiong Hu, Qin Zhiguang, and L. Fagen, "Secure Vehicle-to-roadside Communication Protocol Using Certificate-based Cryptosystem," IETE Technical Review, vol. 27, pp: 214219, April 2010.
[30] G. Yan, S. Olariu, and M. C. Weigle, "Providing VANET security through active position detection," Computer Communications, vol. 31, pp: 2883-2897, July 2008.
[31] M. Eltoweissy, M. H. Heydari, L. Morales, and I. H. Sudborough, "Combinatorial Optimization of Group Key Management," Journal of Network and Systems Management, vol. 12, pp: 33-50, 2004.
[32] M. Moharrum, R. Mukkamala, and M. Eltoweissy, "CKDS: an efficient combinatorial key distribution scheme for wireless ad-hoc networks," in Performance, Computing, and Communications, 2004 IEEE International Conference on, 2004, pp: 631-636.
[33] M. Moharrum, M. Eltoweissy, and R. Mukkamala, "Dynamic combinatorial key management scheme for sensor networks," Wireless Communications and Mobile Computing, vol. 6, pp: 1017-1035, 2006.
[34] H. Arbabi and M. C. Weigle, ""Highway Mobility and Vehicular Ad-Hoc Networks in ns3," in Proceedings of the Winter Simulation Conference Baltimore, MD, 2010.
[35] A. Wasef, R. Lu, X. Lin, and X. Shen, "Complementing public key infrastructure to secure vehicular ad hoc networks," Wireless Commun., vol. 17, pp: 22-28, 2010.
[36] M. E. Nowatkowski and H. L. Owen, "Certificate revocation list distribution in VANETs using Most Pieces Broadcast," in IEEE SoutheastCon 2010 (SoutheastCon), Proceedings of the, pp: 238-241.
[37] Roy, B., Barreto, P., Libert, B., McCullagh, N., and Quisquater, J.-J., "Efficient and Provably-Secure Identity-Based Signatures and Signcryption from Bilinear Maps", Advances in Cryptology - ASIACRYPT 2005, (Springer Berlin / Heidelberg, 2005), pp: 515-532
[38] Engoulou, Richard Gilles, Martine Bellaïche, Samuel Pierre, and Alejandro Quintero. "VANET security surveys." Computer Communications 44 (2014): 1-13.
[39] Son, Junggab, Hasoo Eun, Heekuck Oh, Sangjin Kim, and Rasheed Hussain. "Rethinking vehicular communications: merging VANET with cloud computing." In Proceedings of the 2012 IEEE 4th International Conference on Cloud Computing Technology and Science (CloudCom), pp: 606-609. IEEE Computer Society, 2012.
[40] Alexiou, Nikolaos, Marcello Laganà, Stylianos Gisdakis, Mohammad Khodaei, and Panagiotis Papadimitratos. "VeSPA: vehicular security and privacy-preserving architecture." In Proceedings of the 2nd ACM workshop on Hot topics on wireless network security and privacy, pp: 19-24. ACM, 2013.
[41] Lacroix, Jesse, and Khalil El-Khatib. "Vehicular Ad Hoc Network Security and Privacy: A Second Look." In VEHICULAR 2014, The Third International Conference on Advances in Vehicular Systems, Technologies and Applications, pp: 6-15. 2014.
[42] Daimi, Kevin, Mustafa Saed, and Scott Bone. "A Multi-Level Security Architecture for Vehicular Ad Hoc Network." In Proceedings of the World Congress on Engineering, vol. 1. 2014.

جدوى التحقق ونقييم الأداء للقصاء المعتمد على الثبكات المخصصة للمركبات

أحمد الدارايسة، ومحمد محرم*، وأحمد يوسف

فسم نظم المعلومات، جامعة الملك سعود، و * عمادة البحث العمهي، جامعة الإمام محمد بن سعود الإسلامية، الرياض، الدملكة العربية السعودبة

adaraiseh@ksu.edu.sa

المستخلص. إن الثبكات المخصصة للمركبات (فانت، VANETs) هي شبكات لاسلكية تساعد على تحسين الكفاءة والسلامة أثناء القيادة. تقوم هذه الثبكات بتوفير مجموعة واسعة من الخدمات على الطريق مثل الكشف عن الازدحام المروري، وإيجاد طرق بديلة، وتققير الوقت إلى الوجهة، والتحذير من الاصطدام، وغيرها الكثير هي واحدة من أكبر التحديات في نشر شبكات الفانت، وكيفية معالجة القضايا الأمنية بنجاح. وترجع هذه القضايا إلى المتطلبات الأمنية المتضاربة مثل الخصوصية وقابلية الكثف. لقد تم اقتراح نظام أمني لهذه الشبكات مبني على الاستبعاد (EBV) كإطار عام لحل بعض القضايا الأمنية للفانت. في هذه الورقة، قمنا بالتحقق من جدوى هذا الإطار وتقييم أدائه من خلال مجموعة من تجارب المحاكاة. لقد قمنا بقياس الوقت اللازم لتسليم الرسائل، وفقدان الحزمة، ومنوسط الإنتاجية. وأظهرت الننائج أن الإطار الجديد منافس قوي لللبروتوكولات الأخرى من حيث الكفاءة والنكلفة.

Utilization of the Modern Syllogistic Method in the Exploration of Hidden Aspects in Engineering Ethical Dilemmas

Ali Muhammad Rushdi, Taleb Mansour Alshehri, Mohamed Zarouan, and Muhammad Ali Rushdi*

Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
*Department of Biomedical and Systems Engineering, Faculty of Engineering, Cairo University, Giza, Arab Republic of Egypt arushdi@kau.edu.sa

Abstract

Engineering ethical dilemmas emerge as problems that are hard to solve, not due to a deficiency in knowledge of moral rules and principles that are to be referred to, but to other reasons including vagueness, conflict of interest and differences in opinions regarding priorities. This paper proposes utilizing logic deduction in the exploration of hidden aspects in dilemmas, which might lead to their resolution. The paper presents a powerful method for deduction in propositional logic, called the Modern Syllogistic Method. The method ferrets out from a given set of premises all that can be concluded from it in the most compact form. The method casts the set of premises into a single switching function equated to zero and obtains the complete sum of this function as a disjunction of all prime consequents. The complete sum is derived via an efficient method, namely, the improved Blake-Tison algorithm. An incremental version of the MSM augments the original set of premises by new ones, and seeks the updated consequences incrementally, i.e., without having to recalculate the complete sum from scratch. We employ this method in the investigation of different scenarios or premises describing a specific ethical dilemma from a variety of perspectives. Comparison of the consequences of these scenarios helps in deriving acceptable solutions of various dilemmas, including the dilemma of having to pay a bribe to obtain one's own rights, the dilemma of human consumption of genetically-modified foods, and the dilemma of discarding a whole lot of food when only a part of it becomes filthy or unhealthy. The work presented herein is a preliminary step towards implementing a software package that offers assistance in the resolution of ethical dilemmas. The package will use premises that are compatible with the fundamentals and rules of Islamic jurisprudence formulated in deterministic, fuzzy, or intuitionistic fuzzy logic.

[[Y ا
مصر ، تحقيت محمد حامد الفقي، •VV (ه// 90 (م، الكتاب مناح على الموقع التاللي
في شبكة الثبكات: http://www.raqamiya.org

Magrez, P. and Philippe, S., Fuzzy modus ponens: A new model suitable for applications [11 T]
in knowledge-based systems, International Journal of Intelligent Systems, 4 (2): 181200, (1989).

Dubois, D. and Henri, P., Fuzzy logics and the generalized modus ponens revisited, [11६] Cybernetics and Systems, 15 (3-4): 293-331, (1984).

Tsukamoto, Y., An approach to fuzzy reasoning method, In Gupta, M. M. and Yager, R. [110]
R. (Editors), Advances in Fuzzy Set Theory and Applications, North-Holland, Amsterdam, The Netherlands, pp. 137-149, (1979).

Zadeh, L. A., Fuzzy logic, IEEE Computer, 21 (4): 83-93, (1988).
Mizumoto, M. and Zimmermann, H.-J., Comparison of fuzzy reasoning methods, Fuzzy [1 lV] Sets and Systems, 8 (3): 253-283, (1982).

Hellendoorn, H., The generalized modus ponens considered as a fuzzy relation, Fuzzy Sets [1 ^^] and Systems, 46 (1) 29-48, (1992).

Gaines, B. R., Foundations of fuzzy reasoning, International Journal of Man-Machine [119] Studies, 8 (6): 623-668, (1976).
Ross, T. J. Fuzzy Logic with Engineering Applications, Wiley, New York, NY,USA, [${ }^{\text {r•]] }}$ (2009).

Liu, J., Ruan, D., Xu, Y. and Song, Z., A resolution-like strategy based on a lattice-valued [1 Y '] logic, , IEEE Transactions on Fuzzy Systems, 11 (4): 560-567, (2003).
Demirli, K. and Turksen I. B., A review of implications and the generalized modus ponens, Proceedings of the Third IEEE Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), 2: 1440-1445, (1994).
Shen, Zuliang, Liya Ding, and Masao Mukaidono. Fuzzy resolution principle,
Proceedings of the IEEE Eighteenth International Symposium on Multiple-Valued Logic, pp: 210-215 (1988).
Atanassov, K. and George, G., Elements of intuitionistic fuzzy logic, Part I, Fuzzy Sets and [1 Y] Systems, 95 (1): 39-52, (1998).
Ciftcibasi, T. and Altunay, D., Fuzzy propositional logic and two-sided (intuitionistic) [Y Y]
fuzzy propositions, Proceedings of the Fift IEEE International Conference on Fuzzy Systems, 1: 432-438, (1996).

Copi, I. M. and Cohen, C., Introduction to Logic (14 ${ }^{\text {th }}$ Edition), Prentice-Hall, Upper [${ }^{\prime}$ •] Saddle River, NJ, USA, (2010), 688 p.
 فؤاد عبدالباقي، إخراج وتصحيح: محب الاين الخطيب، تعليق: عبدالعزيز بن باز، دار المعرفة، بيروت، الهو اهـ،

 .7.9/乏
 الشافعية، دار الكتب العلمية بيروت - لبنان. الكتاب مناح على الموقع النالي في شبكة http://www.raqamiya.org الشبكات
 http://waqfeya.net/book.php?bid=847 مناح على الموقع النالي في شبكة الثبكات
 http://www.al-islam.com :شبكة الثبكات

 [^^1 [1 الصاعدي، حمد بن حمدي، الفرق بين القاعدة الأصولية والفقهية من خلال التعريف بعلمي أصول الفقه والقواعد الفقهية، مجلة الجامعة الإسلامبة، العدد •זا، صفحات

$$
\text { . }(\Delta) \leqslant r\rceil) \leqslant r q-r q 1
$$

[9.1"] جمعة، عماد علي، تشجبر روضة الناظر لابن قد/مة /الدقدسي، دار النفائس للنشر

$$
\text { والنوزيع، } 1 \text { • . 「 م. }
$$

[• • [1 آل بورنو، محمد صدقي بن أحمد بن محمد، الوجيز في شرح قواعد الفقة الكلية، مؤسسة الرسالة، بيروت، لبنان، 17 اء (هـ، الكتاب متاح على الموقع التالي في شبكة الثبكات: http://shamela.ws/index.php/book/8379
 http://ia600507.us.archive.org/2/items/waq110873waq/110873.pdf :شبكة الشبكات

Jackson，P．，Computing prime implicates incrementally，In Automated Deduction－CADE－［＾• ］ 11，Springer，Berlin－Heidelberg，Germany，pp：253－267，（1992）．
Coudert，O．and Madre，J．C．，Implicit and incremental computation of primes and［ ${ }^{\prime}$ ］］ essential primes of Boolean functions，Proceedings of the 29th ACM／IEEE Design Automation Conference，IEEE Computer Society Press，pp：36－39，（1992）．
Ngair，T．－H．，A new algorithm for incremental prime implicate generation，IJCAI，1：46－51，［＾「］ （1993）．
Dorst，K．and Royakkers，L．，The design analogy：a model for moral problem solving，［＾${ }^{\mu}$ ］ Design Studies，27：633－656，（2006）．

Hatcher，D．L．，Why formal logic is essential for critical thinking，Informal Logic， 19 （1）：［＾乏 ］ 77－89，（1999）．
Salmon，M．，Introduction to Logic and Critical Thinking，Cengage Learning，Boston，［＾0 ］ MA，USA，（2012）．
［＾7］ابن تيميّة، أحمد بن عبدالحليم، دجموع الفتاوى، تحقيت：أنور الباز－عامر الجزار، دار

$$
\text { الوفاء، الطبعة r، المجلد 9، صفحة r } 9 \text { ((}
$$

 سليمـن بن عبدالرحمن الصنيع، صحصه：محمد حامد（لفقي، مطبعة السنة المحمدبة،

Heysse，T．，Why logic doesn＇t matter in the（philosophical）study of［＾9］ argumentation，Argumentation， 11 （2）：211－224，（1997）．
Maier，B．and W．A．Shibles，Medical Language：The Ordinary Language Approach，［9．］ Chapter 18 （pp：427－451）in：The Philosophy and Practice of Medicine and Bioethics， Springer Dordrecht Heidelberg，Germany，（2011）， 650 p．
Steimann，F．，A case against logic，Proceedings of the Eighth World Congress on Medical
Informatics（MedInfo＇95），Healthcare Computing \＆Communications Canada，Inc．， Edmonton，Alberta，pp．989－993，（1995）．
Haack，S．，Dummett＇s justification of deduction．Mind， 91 （362）：216－239，（1982）．［9ץ ］
Edmonds，B．，How formal logic can fail to be useful for modelling or designing MAS，In［9 $\quad\left[\begin{array}{l}\text { ］}\end{array}\right.$ Regulated Agent－Based Social Systems，Springer，Berlin－Heidelberg，pp．1－15，（2004）．
Sequoiah－Grayson，S．，The scandal of deduction，Journal of Philosophical Logic， 37 （1）：［9 ］ 67－94，（2008）．
D’Agostino，M．and Floridi，L．，The enduring scandal of deduction，Synthese， 167 （2）：271－［90 ］ 315，（2009）．
Copi，I．M．，Symbolic Logic（Fifth edition），Prentice hall，New York，NY，USA，（1979），［97 ］ 411 p.
Winnie，J．A．，The completeness of Copi＇s system of natural deduction，Notre Dame［9V ］ Journal of Formal Logic，（11）：379－382，（1970）．
Slater，B．H．，Paraconsistent logics？Journal of Philosophical logic， 24 （4）：451－454，［9＾］ （1995）．
Anderson，J．A．，Discrete Mathematics with Combinatorics（Second Edition）．Prentice［99］ Hall，Upper Saddle River，NJ，USA，（2003）， 928 p．

Hwa, H. R., A method for generating prime implicants of a Boolean expression, IEEE [${ }^{7 r}$] Transactions on Computers, C-23 (6): 637-641 (1974).
Reusch, B., Generation of prime implicants from subfunctions and a unifying approach to [$7 \boldsymbol{\pi}$] the covering problem, IEEE Transaction on Computers, C-24 (9): 924-930 (1975).
Muroga, S., Logic Design and Switching Theory, Wiley, New York, NY, USA (1979), 618. [7 ${ }^{7}$]
Cutler, R. B., Kinoshita, K. and Muroga, S., Exposition of Tison's Method to Derive all [70] Prime Implicants and all Irredundant Disjunctive Forms for a Given Switching Function, Report No. UIUCDCS-R-79-993, Department of Computer Science, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois, IL, USA (1979).
Loui, M. C, Bilardi, G., The Correctness of Tison's Method for Generating Prime
Implicants, Report R-952, UILU-ENG 82-2218, Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, (UIUC), Urbana, Illinois, IL, USA (1982).
Coudert, O., and Madre, J. C., A new method to compute prime and essential prime
implicants of Boolean functions, Advanced Research in VLSI and Parallel Systems, Proceedings of the 1992 Brown/MIT Conference, T. Knight and J. Savage (Editors) : 113-128 (1992).
Rushdi, A. M. and Al-Yahya, H. A., A Boolean minimization procedure using the [7 A] variable-entered Karnaugh map and the generalized consensus concept, International Journal of Electronics, 87 (7): 769-794, (2000).
Rushdi, A. M. and Al-Yahya, H. A., Derivation of the complete sum of a switching function with the aid of the variable-entered Karnaugh map, Journal of King Saud University: Engineering Sciences, 13 (2): 239-269 (2001).
Rushdi, A. M., Prime-implicant extraction with the aid of the variable-entered Karnaugh map, Umm Al-Qura University Journal: Science, Medicine and Engineering, 13 (1): 53-74, (2001).
Rushdi, A. M. and Al-Shehri, A. S., Selective deduction with the aid of the variableentered Karnaugh maps, Journal of King Abdulaziz University: Engineering Sciences, 15 (2): 21-29, (2004).
Alexe, G., Alexea, S., Crama, Y., Foldes, S., Hammer, P. L. and Simeone, B.,
Consensus algorithms for the generation of all maximal bicliques, Discrete Applied Mathematics, 145 (1): 11-21 (2004).
Ślęzak, D., Association reducts: Boolean representation, in G. Wang, et al. (Editors), Rough Sets and Knowledge Technology, RSKT 2006, LNAI 4062, Springer, BerlinHeidelberg, Germany: 305-312 (2006).
Pawlak, Z. and Skowron, A., Rough sets and Boolean reasoning, Information Sciences, 177 (1): 41-73 (2007).
Rushdi, A. M. and Albarakati, H. M., Using variable-entered Karnaugh maps in determining dependent and independent sets of Boolean functions, Journal of King Abdulaziz University: Computing and Information Technology Sciences, 1 (2): 45-67, (2012).

Rushdi, A. M. and Albarakati, H. M., The inverse problem for Boolean [V7] equations, Journal of Computer Science, 8 (12): 2098-2105 (2012).
Rushdi, A. M., and Albarakati, H. M., Construction of general subsumptive solutions of Boolean equations via complete-sum derivation, Journal of Mathematics and statistics, 10 (2): 155-168 (2014).
Kear, A. and Tsiknis, G., An incremental method for generating prime implicants/ [VA] implicates, Journal of Symbolic Computation, 9: 185-206 (1990).
De Kleer, J., An improved incremental algorithm for generating prime implicates, AAAI Press, of the Tenth National Conference on Artificial Intelligence, Proceedings (1992).

Rittel，H．and M．Webber，Dilemmas in a general theory of planning，Policy Sciences， 4 ［＜0 ］ （2）：155－169，（1973）．
DeGrace，P．and L．H．Stahl，Wicked Problems，Righteous Solutions：A Catalog of Modern［〔7 ］ Engineering Paradigms，Prentice－Hall，Upper Saddle River，NJ，USA，（1998）．

Blake，A．，Canonical Expressions in Boolean Algebra，Ph．D．Dissertation，Department of［〔＾］ Mathematics，University of Chicago（1937）， 273 p．

Brown，F．M．，Boolean Reasoning：The Logic of Boolean Equations，Kluwer Academic［〔9］ Publishers，Boston，MA，USA（1990）， 273 p．

Gregg，J．R．，Ones and Zeros：Understanding Boolean Algebra，Digital Circuits，and the［0．］ Logic of Sets，IEEE PRESS，New York，NY，USA（1998）， 296 p．
［（0］رشدي، علي محمد علي، والشـهري، عبدالرحمن سعيد، الاستندلال المنطقي ودوره المساند

Rushdi，A．M．and Ba－Rukab，O．M．，Some Engineering Applications of the modern［or ］ syllogistic method，SEC7 Paper 226，Proceedings of the $7^{\text {th }}$ Saudi Engineering Conference（SEC7），Riyadh，Saudi Arabia，4：389－401（Also p． 201 in Abstracts Volume）（2007）．
Rushdi，A．M．and Ba－Rukab，O．M．，The modern syllogistic method as a tool for［or ］ engineering problem solving，Journal of Qassim University：Engineering and Computer Sciences， 1 （1）：57－70（2008）．
Rushdi，A．M．and Ba－Rukab，O．M．，An exposition of the modern syllogistic method of propositional logic，Umm Al－Qura University Journal：Engineering and Architecture， 1 （1）：17－49，（2009）．
Rushdi，A．M．，and Ba－Rukab，O．M．，Powerful features of the modern syllogistic method［00 ］ of propositional logic，Journal of Mathematics and Statistics， 4 （3）：186－193，（2008）．
Rushdi，A．M．and Ba－Rukab，O．M．，Switching－algebraic analysis of relational databases，［07 ］ Journal of Mathematics and Statistics， 10 （2）：231－243，（2014）．
Rushdi，A．M．，and Ba－Rukab，O．M．，Map derivation of the closures for dependency and［OV ］ attribute sets and all candidate keys for a relational database，Journal of King Abdulaziz University：Engineering Sciences， 25 （2）：3－33，（2014）．
Rushdi，A．M．，Zarouan，M．M．，Alshehri，T．M．and Rushdi，M．A．，The Incremental［0＾］
Version of the Modern Syllogistic Method，Journal of King Abdulaziz University： Engineering Sciences，accepted for publication．
Rushdi，A．M．，Zarouan M．M．，Alshehri，T．M．and Rushdi M．A．，A modern syllogistic［09］ method in realistic fuzzy logic，submitted for publication．
Tison，P．，Generalization of consensus theory and application to the minimization of［7．］ Boolean functions，IEEE Transactions on Electronic Computers，EC－16（4）：446－ 456 （1967），with Comments，Cutler，R．B．and Muroga，S．，ibid．， 28 （7）：542－543 （1979）．
Slagle，J．R．，Chang，C．－L．and Lee，R．C．T．，A new algorithm for generating prime［7］］ implicants，IEEE Transactions on Computers，C－19（4）：304－310（1970）．

Von Grunebaum, G. E., Concept and function of reason in Islamic ethics, Oriens, 15: 1-[${ }^{\dagger} \wedge$] 17 (1962).
Carney, F. S., Some aspects of Islamic ethics, The Journal of Religion, 63 (2): 159-174, [$\left.{ }^{〔} 9\right]$ (1983).

Kevin Reinhart, A., Islamic law as Islamic ethics, The Journal of Religious Ethics, 11 (2): [${ }^{〔}$ •] 186-203, (1983).
Beekun, R. I., Islamic Business Ethics, The International Institute of Islamic Thought, [T] (1997), 84 p.

Siddiqui, A., Ethics in Islam: Key concepts and contemporary challenges, Journal of Moral [rץ] Education, (1997).
Sheperd, J. J., Islam, in Encyclopedia of Applied Ethics, Vol. 2, San Diego, CA, USA, pp: [${ }^{r}{ }^{\mu}$] 733-740, (1998).

Brown, D., Islamic ethics in comparative perspective, The Muslim World, (1999).
Ozdemir, I., Toward an Understanding of Environmental Ethics from a Qur'anic [${ }^{\circ} \mathrm{O}$] Perspective, in Islam and Ecology: y: A Bestowed Trust, Mathewson, D. F. and Bahauddin, A. H. (Editors), Cambridge: Harvard Divinity School, pp: 3-38, (2003).

Abdul-Rahman, A. R., Ethics in accounting education: Contribution of the Islamic [[] principle of Maslahah, International Journal of Economics, Management and Accounting, 11 (1): 1-18, (2003).

Al-Aqeel, A. I., Ethical guidelines in genetics and genomics: An Islamic perspective, Saudi [rv] Medical Journal, 26 (12): 1862-1870, (2005).

Moad, E. O., A path to the oasis: Sharī 'ah and reason in Islamic moral [${ }^{\mu} \mathrm{N}$] epistemology. International Journal for Philosophy of Religion, 62 (3): 135-148, (2007).
Al-A'ali, M., Computer ethics for the computer professional from an Islamic point of view, $[\mathrm{rq}]$ Journal of Information, Communication and Ethics in Society, 6 (1): 28-45, (2008).
Hameed, S. A., Software engineering ethical principles based on Islamic values. Journal of [\& •] Software, 4 (6): 563-570, (2009).
Abdallah, S., Islamic ethics: an exposition for resolving ICT ethical dilemmas, Journal of [$\leqslant 1$] Information, Communication and Ethics in Society, 8 (3): 289-301, (2010).
Solihu, A. K. H. and Ambali, A. R., Dissolving the engineering moral dilemmas within the [$\mathbb{\xi} \boldsymbol{r}]$ Islamic ethico-legal praxes, Science and Engineering Ethics, 17 (1): 133-147, (2011).
Hasan, S., Islamic Jurisprudence: Sources and Traditions Creating Diversity in Human
Relationships, Chapter 2 in S. Hasan (Editor), The Muslim World in the $21^{\text {st }}$ Century, Springer Science + Business Media, Heidelberg, Germany, (2012).

Possumah, B. T., Ismail, A. G. and Shahimi, S., Bringing work back in Islamic [\leqslant ! ethics. Journal of business ethics, 112 (2): 257-270, (2013).
علي محمد شدي وآخرون

Howard, R., Fifty-one mini case studies for engineering ethics and professionalism, [${ }^{7}$] Proceedings of the IEEE $26^{\text {th }}$ Annual Conference on Frontiers in Education, FIE'96, 2: 838-841, (1996).
Ertas, A. and Jones, J. C., Engineering Ethics, Chapter 10 in: The Engineering Design [${ }^{\vee}$] Process, Wiley, New York, NY, USA (1993), 525 p.
Humphreys, K. K., What Every Engineer Should Know about Ethics (Vol. 35), CRC Press, [^] New York, NY, USA, (1999), 264 p.
Comstock, G., Vexing Nature?: On the Ethical Case Against Agricultural biotechnology, [9] Kluwer Academic Publishers, Norwell, MA, USA, (2000), 297p.
Moriarty, G., Three kinds of ethics for three kinds of engineering. IEEE Technology and [1.] Society Magazine, 20 (3): 31-38, (2001).
Fleddermann, C. B., and Sanadhya, S. K., Engineering Ethics, Fourth Edition, Pearson [I]] Education, Upper Saddle River, MA, USA, (2014), 192 p.
Martin, M. W., and Schinzinger R., Ethics in Engineering, Fourth Edition, McGraw-Hill, [${ }^{1}$ Y] Boston, MA, USA, (2005), 339 p.
Paul, R., and Elder, L., The Miniature Guide to Understanding the Foundations of Ethical [${ }^{\top}{ }^{\top}$] Reasoning, Third Edition, Foundation for Critical Thinking, Tomales, CA, USA, 2005.
Atkinson, K. and Bench-Capon, T., Addressing moral problems through practical reasoning, in Goble, L. and Meyer, J.-J. (Editors), Deontic Logic and Artificial Normative Systems, lecture Notes in Artificial Intelligence (LANI) 3366, pp: 8-23, Springer, Berlin-Heidelberg, Germany, 2006.
[0 [0 رشاد، عصام الاين محمد، أخلافيات وآداب العمل في خطط التعليم الهندسي والنفني،

[[1] محمد، محمد حسن، أخلافيات المـنة: بضاعتتا ردت إلينا، الجامعية: مجلة جامعة الملك
عبد/لعزبز ، الصفحتان • ؟-اء (7 . . זم).

Rushdi, A. M. and Baz, A. O., Computer assisted resolution of engineering ethical [IV] dilemmas, SEC7 Paper 147, Proceedings of the Seventh Saudi Engineering Conference (SEC7), Riyadh, KSA, pp. 409-418, (2007).

Robbins, R. W. and Wallaces, W. A., Decision support for ethical problem solving: A [1^] multi-agent approach, Decision Support Systems, 43: 1571-1587, (2007).

Harris Jr., C., Pritchard, M., Rabins, M. J., James, R. and Englehardt, E., Engineering [19] Ethics: Concepts and Cases, Fifth Edition, Cengage Learning, USA, (2013), 336 pp.

$$
\begin{aligned}
& \text { [آ [الماوردي، علي بن محمد، أدب /لدنبا والدبن، ت: . } 0 \text { ٪ هـ. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { دمشت، ت: 7人9 } 9 \text { هـ }
\end{aligned}
$$

وجهات نظرية متباينة. نود في خطوة تالية أن نكرر ذلك مع استخدام مقدمات
 Fuzzy) أو في صور يقتضيها المنطق الضبابي (Deterministic/crisp) ،09](Intuitionistic fuzzy logic) (logic
 الأخلاڤية، ولكن لا تستقل بإجراء الحل بنفسها. حاولنا خلال عملنا في هذه الورقة دراسة معضلة شائكة التعقيد نتعلق بموضوع قيام موظف يعمل في مؤسسة معينة باللجوء إلى الرأي العام لفضح نوع من الفساد داخل مؤسسته، وهو الأمر الذي اصطلح على تسميته بإطلاق الصَفَّارة أو إطلاق
 الصفارة بالصافر. ولكن اتضح لنا صعوبة المعضلة التي يتتاولها هذا المثال مقارنة بالأمثلة الثلاثة التي أوردناها هنا من أمور عدة من بينها الزيادة الواضحة في عدد المتغيرات الإخبارية اللازمة لوصف المسألة، وكذللك كثرة عدد المقدمات المتعين افتراضها، وصعوبة الحصول على نتائج مرضية أئًا كانت مجموعة المقدمات المستخدمة، ولذلك أرجأنا دراسة هذه المسألة إلى عمل مستقبلي مستقل إن شاء الله تعالى.

References

Rudnicka, E., Besterfield-Sacre, M., Shuman, L. and Wolfe, H., evaluating the decision making process that individuals and teams of engineering students employ when solving ethical dilemmas, Proceedings of the IEEE $35^{\text {th }}$ Annual Conference on Frontiers in Education, FIE'05, (Paper T2D-20), (2005).
Kumagai, J., The whistle-blower's dilemma, IEEE Spectrum, 41(4): 53-55 (2004).
Sturges, D. L., Overcoming the ethical dilemma: Communication decisions in the ethic $\left[{ }^{~}{ }^{\top}\right]$ ecosystem, IEEE Transactions on Professional Communication, 35(1): 44-50, (1992).
Al Ali, B., Mazhar Anwar Ul Haq, M., Al-Rebh, A. A., Al-Qahtani, M. and Al-Qurashi, [${ }^{\text {]] }}$ T., Decision making in ethical dilemma, 2012 Proceedings of IEEE Technology Management for Emerging Technologies (PICMET'12), pp. 589-599, (2012).
Unger, S. H., Codes of Engineering Ethics, In Johnson, D. G. (Editor), Ethical Issues in [0] Engineering, Prentice Hall, Englewood Cliffs, NJ, USA, pp: 105-129, (1991).

ثمنه وحده (
الطعن في صحلاحيتها والمطالبة بسكبها وخسارة ثمنها.
مثال

ندرس هنا الموقف عند بائع من العوام يفنقر إلى العلم الثرعي ولا يعنى بقضايا المفاسد والصحة ونحوها وأكبر همه ومبلغ علمه قد لا يتجاوز أمر الربح والخسارة، ومن ثم فربما لا يعنيه من المقدمات المذكورة في المثال سأ غير

المقدمتين (3g)، (3h) ونتيجة لحرصه على تفادي الخسارة نضيف المقدمنين:

معناها	صياغنها	رقم المقدمة
رفض الخسارة الفادحة بفقد ثـن بقية البراميل.	\bar{L}_{r}	(3m)
رفض الخسارة اليسيرة بفقد ثمن البرميل الأول.	\bar{L}_{1}	(3n)

هنا تصبح المسألة بسيطة للغاية، وتأخذ الصورة:

$$
\begin{equation*}
f_{2} \equiv P_{1} \bar{L}_{1} \vee P_{r} \bar{L}_{r} \vee L_{r} \vee L_{1}=0 \tag{54}
\end{equation*}
$$

والمجموع الكامل لهذه الدالة هو :

$$
\begin{equation*}
C S\left(f_{2}\right) \equiv P_{1} \vee P_{r} \vee L_{r} \vee L_{1}=0 \tag{55}
\end{equation*}
$$

فهذا البائع الذي كان يخشاه ابن سيرين لن يرضى بخسارة ثمن البرمبل الأول ($\left.\bar{L}_{11}=0\right)$ البرميل الأول (P=0) ألغينا المقدمة (4n) بافتراض شيء من حسن النية عند البائع فلن نحصل على معلومات عن سكب البرميل الأول، ويصبح هذا الأمر مسكوتا عنه.

ه. خاتمة واستنتناجات
وضحنا في ورقة البحث هذه كيف يمكن توظيف الطريقة الاستدلالية الحديثة لتدارس سيناريوهات مختلفة أو مقدمات مختلفة تصف معضلة أخلاقية معينة من

بأنه مفلس. وخلال سجن ابن سيرين نوفي الصحابي الجليل أنس ابن مالك رضي اله عنه خادم النبي صلى اله عليه وسلم، وكان آخر الصحابة موناً بالبصرة، وأوصى أنس رضي اله عنه أن يغسله ويصلي عليه ابن سبرين، ورضخ والي البصرة آنذاكك لهذه الوصية التي تحرمه شخصيا شرفا كان يتمناه (ويستحقه بحكم منصبه) وأخرج ابن سيرين لنتالك المهمة بعد استئان الدائن. مثال سب:
نعيد حل السسألة السابقة من جهة نظر آخرين لا يرون صحة المقدمتين
(3ا)، (3i) بل يرون بدلا منها:

تصبح اللقتات في هذه الحالة معطاة بدالة واحدة $f_{1} \equiv \bar{F}_{1} \vee C\left(\overline{F_{1}} \vee F_{r}\right) \cup F_{1} \bar{N}_{1} \vee F_{r} \bar{N}_{r} \vee H N_{1} \bar{P}_{1} \vee H N_{r} \bar{P}_{r} \vee$ $P_{1} \bar{L}_{1} \vee P_{r} \bar{L}_{r} \vee \bar{C} \vee \bar{H}=0$

$$
\begin{align*}
& \text { والمجموع الكامل لهذه الالة هو : } \tag{52}\\
& C S(f) \equiv \bar{F}_{1} \vee F_{r} \vee \bar{N}_{1} \vee \bar{P}_{1} \vee N_{r} \bar{P}_{r} \vee \bar{L}_{1} \vee \bar{P}_{r} \bar{L}_{r} \vee \bar{C} \vee \bar{H}=0 . \tag{53}
\end{align*}
$$

وهذه النتيجة تلخص رأي هؤلاء الفقهاء، فهم يتمسكون بأن اليقين لا يزول بالثڭك ($\bar{C}=0)$ ويتفقون مع ابن سيرين في ضرورة درء الـفسدة المتوقعة ($\overline{\left.F_{1}=0\right)}$) ($\bar{H}=0$)، ومن ثم يحتبرون البرميل الذي وجدت فيه الفأرة نجسا ولكن بقية البراميل طاهرة (${ }^{\text {(}}$ (${ }^{2}=0$). ولذلك فالبرميل الأول وحده لا يصلح

البراميل تقتضي سكب محتويات هذه البراميل وعدم إطعامها للناس.		
طفكبة محتوى البرميل الأول يعني فققان ثمنه أي خسارة	$P_{1} \rightarrow L_{1}$	(3g)
فادحبة محتوى بقية البراميل يعني فققان ثمنه أي خسارة	$F_{5} \rightarrow L_{\text {- }}$	(3h)
	D	(3i)
مطلوب درء مفسدة الإخلال بالصحا	H	(3j)

يككننا أن نجمع هذه المقدمات في صورة دالة واحدة f نساويها بالصفر على صورة:

$$
\begin{align*}
& f=\bar{F}_{1} \vee D F_{1} \bar{F}_{r} \vee F_{1} \bar{N}_{1} \vee F_{r} \bar{N}_{r} \vee H N_{1} \bar{P}_{1} \vee H N_{r} \bar{P}_{r} \vee P_{1} \bar{L}_{1} \vee \\
& F_{r} \bar{L}_{r} \vee \bar{D} \vee \bar{H}-0 \tag{50}
\end{align*}
$$

إن المجموع الكامل لهذه الدالة هو :

$$
\begin{equation*}
C S(f) \equiv \bar{F}_{1} \vee \bar{F}_{r} \vee \bar{N}_{1} \vee \bar{N}_{r} \vee \bar{P}_{1} \vee \bar{P}_{r} \vee \bar{L}_{1} \vee \bar{L}_{r} \vee \bar{D} \vee \bar{H}=0 \tag{51}
\end{equation*}
$$

وهذه النتيجة تلخص موقف ابن سيرين رحمه اله تعالى فهو ترك ما فيه ريبة ($D=0$) على البرميل الأول فحسب (ومن ثم فعدم الصلاحية للاستهلاك الآدمي لا تتعلق بالبرميل الأول فحسب ($\bar{N}_{1}=0$) بل تشمل بقية البراميل ($)^{\left(\bar{N}_{r}=0\right) ، ~ و م ن ~ ث م ~ ف ه و ~ ل م ~ ي ك ت ف ~ ب س ك ب ~}$
 ثمن البرميل الأول فحسب

$$
.\left(\bar{L}_{r}=0\right)
$$

لقد ترتب على ورع ابن سيرين إفلاسه، ومن ثم سجنه، ونظر ابن سيرين إلى سجنه كعقوبة طبيعية لذنب كان قد ارتكبه قبل ذلك بأربعين سنة حين عاير رجلا

في الواقع هي حباة أو موت، وأن وجود الفأرة الميتة في الزبت قد يعني نلوثه بجراثيم الطاعون أو غيره من الأمراض الفناكة. نصوغ متغيرات المسألة على النحو النالي:

يمكننا أن نصف الموضوع من جهة نظر ابن سيرين بالمقدمات التالية:

$$
\begin{equation*}
\bar{U}=\bar{F}=\bar{H}=\bar{P}=0 \tag{49}
\end{equation*}
$$

وهو ما يعني:

أي أنه في هذه الحالة مع وجود المجاعة، يحدث ضرر حيث يتم انتاج الأطعمة المعدلة الوراثية واستعمالها. وليست هنالك أية معلومات عن المتغير D الا

أي أننا لا نعرف في هذه الحالة ما إذا كانت تحدث وفيات أو لا.
مثال سأ:
نناقش في هذا المثال واقعة تاريخية حدثت للإمام التابعي الجليل محمد بن سيرين رضي الله تعالى عنه نلخصها هنا نقلا عن الإمام الحافظ الذهبي رحمه اله تعالى [+!]. ششترى محمد بن سيرين عددًا من زفاق (') (براميل) الزيت/ السمن المستخدم كطعام آدمي، وكان الشراء بالأجل أي أنه تسلم السلعة على أن يؤدي ثثنها إلى البائع فيما بعد (عندما ينتهي من بيع السلعة)، وبذا صـار الثمن دبينًا عليه للبائع. اكتشف محمد بن سيرين فأرة ميتة في أحد البراميل فما كان منه إلا أن سكب البراميل كلها لأنه لم يدر أسقطت الفأرة في هذا البرميل أم أنها سقطت في الصهريج الذي ملئت منه البراميل، وبعبارة أخرى، لم يدر هل النجاسة اقتصرت على برميل واحد أم أنها عمت سائر البراميل. وبرغم أن القاعدة الفقهية نتص على (الأصل بقاء ما كان على ما كان) تفسر هنا باقتصـار النجاسة على برميل واحد، إلا أن ورع ابن سيرين منعه من بيع الزيت للناس حتى لا يقع بهم الضرر، كما منعه من رد السلعة للبائع بالعيب الذي فيها حتى لا لا يبيعها البا لائع للناس تغريرًا بهم. ويلفت النظر هنا الإيمان المطلق عند ابن سيرين بمقاصد الشريعة الإسلامية وثقتّه التامة برعايتها لمصالح العباد، فهو لم يكن يعلم من المسألة إلا أنها مسألة نجاسة وطهارة، ولم يكن يعرف ما نعلمه الآن أن المسألة (() زقاق: جمع زق، وهو وعاء من جلد أو نحوه يستعمل لحفظ السوائل.

في هذه الحالة، نحصل على المعادلة التالية:

$$
\begin{equation*}
f_{3} \equiv D \vee \bar{P} \bar{F} \vee U \bar{H} \vee D \bar{H} \vee \bar{P} U \vee \bar{U} F \bar{D}=0 \tag{45}
\end{equation*}
$$

$\bar{U} F$ هنا يمتص الحد D \bar{H} في الحد ويؤدي قانون الانعكاس إلى إحلال الح

 و $\bar{P} U ،$ وبذلك تتتج النتيجة النهائية:

$$
\begin{equation*}
C F\left(f_{3}\right) \equiv D \vee \bar{P} \vee U \bar{H} \vee \bar{U} F=0 \tag{46}
\end{equation*}
$$

وهذه النتيجة تتضمن النتائج التالية الجديدة: . . (وجود مجاعة يقتضي استعمال الأطعمة المعدلة ورانثًا) $F \rightarrow U$ مثال ror
ماذا يحدث إذا ألغينا المقدمتين الأوليين (2a) و (2b) في المثال (r) وأ) واستعملنا مكانهما المقدمتين التاليتين مع الإبقاء على سائر المقدمات:

معناها	صياغنها	رقم المقمة
وجود وفيات يقتضي استعمال الأطعمة المعلة وراثًّا.	$D \rightarrow U$	(2a")
توجد مجاعة.	F	(2b")

في هذه الحالة، نحصل على المعادلة التالية:

$$
\begin{equation*}
f_{4} \equiv \bar{U} D \vee \bar{F} \vee U \bar{H} \vee D \bar{H} \vee \bar{P} U \vee \bar{U} F \bar{D}=0 \tag{47}
\end{equation*}
$$

 الأخير يندمج مع $\overline{\text { ع }}$部 \bar{H} لنصل إلى \bar{H} $C F\left(f_{4}\right) \equiv \bar{U} \vee \bar{F} \vee \bar{H} \vee \bar{P}=0$,

w. r. t. U	$\boldsymbol{U} \overline{\boldsymbol{H}}$	$\overline{\boldsymbol{P}} \boldsymbol{U}$	
$\overline{\boldsymbol{U}} \boldsymbol{F} \overline{\boldsymbol{D}}$	$\boldsymbol{F} \overline{\boldsymbol{D}} \overline{\boldsymbol{H}}$	$\overline{\boldsymbol{P}} \boldsymbol{F} \overline{\boldsymbol{D}}$	$\overline{\boldsymbol{F}} \overline{\boldsymbol{H}}$

w. r.t. F	$\bar{U} F \bar{D}$	$F \bar{D} \bar{H}$	$\bar{P} F \bar{D}$	$\boldsymbol{U} \overline{\boldsymbol{H}}$
	\downarrow	\downarrow	\downarrow	$\overline{\boldsymbol{P}} \boldsymbol{U}$
$\overline{\boldsymbol{F}}$	\downarrow	\downarrow		
	$\overline{\boldsymbol{U}} \overline{\boldsymbol{D}}$	$\overline{\boldsymbol{D}} \overline{\boldsymbol{H}}$	$\overline{\boldsymbol{P}} \overline{\boldsymbol{D}}$	$\boldsymbol{D} \overline{\boldsymbol{H}}$

شكل ()). حساب المجموع الكامل للدالة في المثال وت وD.

مثال بد:
ماذا يحدث إذا ألغينا المقدمتين الأوليين (2a) و (2b) في المثال (rأ) واستعملنا مكانهما المقدمتين النتاليتين مع الإبقاء على سائر المقدمات:

مثال זد:
ماذا يحدث إذا ألغينا المقدمنين الأوليين (2a) و (2b) في المثال (rأ) واستعملنا مكانهما المقدمتين التاليتين مع الإبقاء على سائر المقدمات:

في هذه الحالة، نحصل على المعادلة التالية:

$$
\begin{equation*}
f_{3} \equiv D \vee \bar{P} \bar{F} \vee U \bar{H} \vee D \bar{H} \vee \bar{P} U \vee \bar{U} F \bar{D}=0 \tag{45}
\end{equation*}
$$

هنا يمتص الحد D
 $\bar{P} F$ تراضيًا مع الحد $\overline{\text { F }}$ و

$$
\begin{equation*}
C F\left(f_{3}\right) \equiv D \vee \bar{P} \vee U \bar{H} \vee \bar{U} F=0 \tag{46}
\end{equation*}
$$

وهذه النتيجة تتضمن النتائج التالية الجديدة: . . (وجود مجاعة يقتضي استعمال الأطعمة المعدلة ورانثًا) F $F \rightarrow U$

$$
\begin{align*}
& \text { كمجموع للحدود } \\
& \operatorname{CS}\left(f_{1}\right) \equiv 1=0 . \tag{42}
\end{align*}
$$

أي أن مجموعة المقمات أصبحت غير منسقة (Inconsistent)، وهو ما يفبد من طرف خفي أنه يتعغر تجنب الضرر مع وجود مجاعة. والواقع أنه لا يمكنّا التسليم بوجود هذه المجموعة من المقدمات غير المتسقة وإلا لأمكنتا استتباط نتائج متتاقضة ولا علاقة لها بالموضوع أصلا.

المثال

نحاول هنا تعديل المقدمات (2f)- (2a) كما فعلنا في المثال זب بافتراض وجود مجاعة (F) بدلًا من افنتراض عدم وجودها، مع التظلي عن فرضية (2a) الدتُلقة بانتفاء الضرر • في هذه الحالة نحصل على الشرط:

$$
\begin{equation*}
f_{2} \equiv F \vee U H \vee D H \vee F U \vee D F \bar{D}=0, \tag{43}
\end{equation*}
$$

ويوضح الثنكل رقم (६) كيفية حساب المجموع الكامل للالة ${ }^{\text {(}}$ بحساب التزاضيات (Consensus terms) بالنسبة للمتنيرات الثثلاثة ثائية الصيغة للحدود

$$
\begin{equation*}
C S\left(f_{2}\right) \equiv \bar{F} \vee \bar{H} \vee \bar{P} U \vee \bar{U} \bar{D} \vee \bar{P} \bar{D}=0 \tag{44}
\end{equation*}
$$

 ($\bar{P} U=0)$ H
 (عدم انتاج الأطعمة المعدلة وراثثًا يقتضي حدث وفيات).

نفترض صحة المقدمات التالية:

معناها	صباغتها	رقم المقاصة
لا لا يدث ضرر بسبب نظام التغذية.	\bar{H}	(2a)
لا توجد مجاعة بين الهكان	\bar{F}	(2b)
استعمال الأطعمة المعلد وراثيًا بسبا	$U \rightarrow H$	(2c)
حدوث وفيات يعني وفوع ضرر .	$D \rightarrow H$	(2d)
	$\bar{P} \rightarrow \bar{U}$	(2e)
عدم استعمال الأطعمة المعدلة وراثيًا في وجود مجاعة يسبب وفيات.	$\bar{V} F \rightarrow D$	(2f)

يمكننا أن نجمع هذه المقدمات في صورة دالة واحدة f نساويها بالصفر على

$$
\begin{equation*}
f \equiv H \vee F \vee U \bar{H} \vee D \bar{H} \vee \bar{P} U \cup \bar{U} F \bar{D}=0 \tag{38}
\end{equation*}
$$

وهذه المعادلة يكفي فيها استعمال قانون الانعكاس (reflection law) لحذف
 الحد $C S(f) \equiv H \vee F \vee U \vee D=0$,

وهو ما يعني أن:

$$
\begin{equation*}
H=F=U=D=0 \tag{40}
\end{equation*}
$$

أي أنه يتم تفادي استعمال الأطعمة المعدلة وراثيًا، ولا نوجد مجاعة، ولا يحدث ضرر أو وفيات. وهذه الحال مثالية، ولا نوجد فيها إشكالات أو معضلات.

المثال rب:
ما الذي يحدث إذا غيرنا الفرضية (2b) التي نقرر عدم وجود مجاعة (部) إلى الفرضية (F) التي نقرر وجود مجاعة؟ في هذه الحالة نستعمل الدالة f_{1} على

$$
\begin{equation*}
f_{1} \equiv H \vee \bar{F} \vee U \bar{H} \vee D \bar{H} \vee \bar{P} U \vee \bar{U} F \bar{D}=0 \tag{41}
\end{equation*}
$$

ومجموعة النتائج هنا تعني أن دفع الرشوة لتأمين تكليف المهندس بالعمل هو أمر غير أخلاقي، وأن العمل الذي بظفر به المهندس عن طريق الرشوة هو كسب لا يستحقه، بل يسأل عنه في الدارين. ومن المفبد جداً أن نتأمل في الاختلاف بين المثالين (أ) و و(اد) لأنهما وضحا كيف تختلف مذاهب الناس حول نفس القضية بسبب اختلاف تصوراتهم الأصلية عن المسألة نفسها، حيث يتمثل هذا الاختلاف في فروق قد تكون طفيفة في بعض المقدمات التي تصف المسألة. نلاحظ أن ننائج هذا المثال نتطبق على قضبة أكثر أهمبة من قضبة الارتشاء، ألا وهي قضية النقية (religious dissimulation)، وهي رخصة تسمح للمرء بانقاء الضرر وذلك بالحذر من إظهار ما في النفس من معتقد وغيره للغير [1•‘]، إذ يرخص للمسلم أن يستخدم النقية دون نوسع فيها وفقط عند الضرورة المؤكدة وبضوابط معينة. وعدم الأخذ بهذه الرخصة أفضل لأصحاب العزيمة بل هي واجب لا محيص عنه للائمة المقتدى بهم. ومشهور موفق الإمام الفاضل أحمد بن محمد بن حنبل رضي اله عنه يوم المحنة حيث رفض أن بترخص رأفة بنفسه حتى لا يتسبب في إضالل جمهور الناس من العوام. مثال rأ:
يتعق هذا المثال بالأطعمة المعدَّلة ورانثًا (genetically-modified foods)، حيث نوجد معضلة أنَّ هذه الأطعمة تسبب أضرارًا للبشر، وفي نفس الوقت، قد لا يتسنى الاستخناء عنها لتفادي المجاعات. نفترض أن لدينا المتغيرات الإخبارية النتالية:

معناه	رمز الخبر
إنتاج (Production) الأطعمة المعدلة وراثيًا.	P
الاستعمال (Usage) البشري للأطعمة المعدّلة ورانثّا.	U
وجود نقص فادح في الموارد الغذائية يسبب المجاعة (Famine).	F
	D
وقوع ضرر (Harm) بين السكان راجع إلى نظام التغنية.	H

وهذه النتيجة الأخيرة تعني أن مجموعة المقدمات أصبحت غير متسقة (Inconsistent) يمكن استخدامها لإثبات أية نتيجة تخطر على البال حتى وإن كانت لا صلة لها بالمقدمات متل "الأرض تنور حول الثمس"، وكذلك لإثبات النتيجة المضادة متل " الأرض لا تدور حول الثمس". إن نتيجة هذا المثال نوضح لماذا تمتل المشكلة التي نحن بصددها معضلة أخلاقية (Ethical dilemma)، حيث لا يتسنى لنا أن نضع ما نشاء من مقدمات، لأن فساد المسؤول لا يسمح للمهندس أن يجمع بين مطلب الحصول على حقه في العمل ومطلب الاللتزام الأخلاقي بعدم دفع الرشوة.

إن النتيجة التي وصلنا إليها في المثّال أ مسببة لنوع من الإحباط وليس من الميسور التنليم بها، فإنه إن جاز لعوام الناس الترخص في دفع الرشوة عند الضرورة القهرية لاستخلاص حقوقهم، إلا أن ذلك الترخص لا يسنساغ أو لا يقبل من أصحاب العزيمة أو علو الهمة أو شدة الورع مثل الأئمة المقتدى بهم، ولذلك أضفنا المقدمة التالية إلى المقدمات التسع في المثال (أ:

معناها	صباغنها	رقم المقمة
دفع الرشوة غبر مقبول أخلافيًا.	$B \rightarrow E$	(1m)

وبرغم أن هذه المقدمة قريبة الثبه من المقدمة (/1) في المثال (ج، إلا أنها
تختلف عنها في أنها لا تؤدي إلى عدم اتساق مجموعة المقدمات الكلية، إذ إنها تسفر عن المعادلة التالية لمجموعة المقدمات الكلية الجديدة:

$$
\begin{gather*}
f_{3}=f \vee B E=0 \tag{37a}\\
f_{3}=C S(f) \vee B E=0 \tag{37b}\\
f_{3}=H \vee \bar{W} \vee \bar{B} \vee D \bar{E} \vee \bar{D} E \vee B E=0 \tag{37c}\\
C S\left(f_{3}\right)=H \vee \bar{W} \vee \bar{B} \vee E \vee D=0 \tag{37d}
\end{gather*}
$$

Consensi/W	$\bar{H} W \bar{B}$	$W D \bar{E}$	$W \bar{D} E$	$D \bar{B} W$	
\bar{W}	$\overline{\boldsymbol{H}} \bar{B}$	$D \bar{E}$	$\bar{D} E$	$D \bar{B}$	

Consensi/ D	$\boldsymbol{D} \overline{\boldsymbol{E}}$	$\boldsymbol{D} \overline{\boldsymbol{B}}$	\boldsymbol{H}
$\bar{D} \boldsymbol{E}$	--	$\overline{\boldsymbol{B}} \boldsymbol{E}$	$\overline{\boldsymbol{W}}$
			$\overline{\boldsymbol{H}} \overline{\boldsymbol{B}}$

Consensi/ H	\boldsymbol{H}	$\boldsymbol{D} \overline{\boldsymbol{E}}$
		$\overline{\boldsymbol{D}} \boldsymbol{E}$
$\bar{H} \bar{B}$		$\overline{\boldsymbol{W}}$
		$D \bar{B}$
		$\bar{B} E$

Consensi/ E	$\boldsymbol{D} \overline{\boldsymbol{E}}$	$\overline{\boldsymbol{B}}$
$\boldsymbol{D} \overline{\boldsymbol{E}}$	--C	$\overline{\boldsymbol{W}}$
		\boldsymbol{H}

شكل (). حساب المجموع الكامل للالة f المعطاة في المعادلة (25) في المثال 1 أ بالنسبة للمتغيرات ثنائية لصيغة W و W و H و E.

$$
\begin{gathered}
f_{1}=C S(f) \vee \bar{W} D H \vee \bar{W} \bar{D} \bar{H}=0 \\
f_{1}=H \vee \bar{W} \vee \bar{B} \vee D \bar{E} \vee \bar{D} E \vee \bar{W} D H \vee \bar{W} \bar{D} \bar{H}=0
\end{gathered}
$$

ونلاحظ أن الحد $\bar{W} D H$ يحتوي الحد \bar{W} حرفيًا ومن ثمَّ يمتص به، كما أن الحد أيضًا يحتوي الحد $\bar{W} \bar{D} \bar{H}$

$$
\begin{equation*}
C S\left(f_{1}\right)=C S(f) \tag{34}
\end{equation*}
$$

وهو ما يعني أن نواتج المسألة تبقى على حالها ولا تتغير بإضافة المقدمتين (1ز) و(1k). إن هاتين المقدمتين منضمنتان (بصورة قد نكون خفية بعض الثيء) في مجموعة المقدمات الأصلية، ولكن هذا التضمن لم يصبح جليًا إلا من خلا صياغة المعادلات (31) - (34).

مثال اج:
مرة أخرى، ثمَّ اقتراح مقدمة جديدة تضاف إلى المقدمات التسع (1i) - (1a) في المثال (أ. هذه المقدمة هي:

معناها	صياغنها	رقم المقدمة
لا يدفع المهنس الرشوة.	\bar{B}	(1l)

هذه المقدمة تأخذ الصورة الصفرية:

$$
\begin{gather*}
\bar{B}=0 \tag{35}\\
: \\
f_{2}=f \vee B=0 \tag{36a}\\
f_{2}=C S(f) \vee B=0 \tag{36b}\\
f_{z}=H \vee \bar{W} \vee \bar{B} \vee D \bar{E} \vee \bar{D} E \vee B=0 \tag{36c}\\
C S\left(f_{2}\right)=1=0 \tag{36d}
\end{gather*}
$$

تتضمن المعادلة (28) صدى لبعض المقدمات حيث تفيد أن المسؤول ليس أميناً، وأنه يمنح العمل للمهندس، كما تتضمن معلومات كانت مخفية في المقدمات، وهي أن المهندس يدفع رشوة للمسؤول، وأن المسلك الأخلاقي للمهندس يتوقف على مدى استحقاقه للعمل، فإن كان مستحقًا للعمل كان مسلكه أخلافقًا، وإن كان غير مستحق كان مسلكه غير أخلاقي. وهذه النتيجة الأخيرة تتفق مع الرأي الراجح في الفقه الإسلامي الذي يرى أن الضرورات تبيح المحظورات، ولذللك يرخص للإنسان في دفع الرشوة (رغم كونها محرمة في الأصل) إذا لم يجد سبيلاً لاستخلاص حقه بدونها. وبطبيعة الحال، فإن مسألة الترخيص في الرشوة قد لا تكون مقبولة نظاميًا أو قانونيًا في بلدان كثيرة. مثّال اب:
في المسألة السابقة قد يقال إن مجموعة المقدمات غير كافية لوصف المسألة،
وإن هناللك مقدمتين إضافيتين يتعين إلحاقهما بمجموعة المقدمات الأصلية وهما:

معناها	صباغتها	رقم المقامة
عدم تكليف المهندس بالعمل رغم كونه مستحقًا له يعني عدم أمانة المسؤول.	$\bar{W} D \rightarrow \bar{H}$	(1j)
عدم تكليف المهندس بالعمل عند عدم استحقاقه له يعني أمانة المسؤول.	$\bar{W} \bar{D} \rightarrow H$	(1k)

> يمكن نرجمة هاتين المقدمنين إلى معادلتين صفربتين على الصورة: $\bar{W} D H=0$ $\bar{W} \bar{D} \bar{H}=0$

ومن ثمَّ نؤول المعادلة المعبرة عن المقدمات الكلية إلى:
$f_{1}=f \vee \bar{W} D H \vee \bar{W} \bar{D} \bar{H}=0$,
وهذه يمكن أن تكتب على الصورة:

أية أهمية للمقدمة الخامسة (1e) المشروطة بعدم حصوله على العمل، أو للمقدمة التاسعة (1i) التي تحدد شرطاً للحصول على العمل، كما أن هذا الحصول يعدل المقدمة الرابعة (1d) لتجعل انعدام الأمانة يقتضي الرشوة أو جحود العمل أو

	يقتضيهما كليهما:	
معناها	صباغتها	رقم المقدمة
انعدام الأمانة يقتضي الرشوة أو جحود العمل أو يقتضيهما كليهما.	$\bar{H} \rightarrow(B \vee \overline{\bar{W}})$	(1d')

 وبذلك تتحول المعادلة (25) إلى: $A B C(f)=H \vee \bar{W} \vee \bar{H} W \bar{B} \vee W D \bar{E} \vee W \bar{D} E \vee D \bar{B} W=0$. (26) يوضح الثكل رقم (؟) حساب المجموع الكامل لهذه الالة باستخذام طريقة بليك- تايسون المحسنة (Improved Blake-Tison Method) (10م، ${ }^{[19}$ بالنسبة لكل متغير من المتغيرات الأربعة ثائية الصيغة (biform) وهي المتغيرات W W Un-) التي يظهر كل منها في الصيغة الموجبة أو المثبتّة E, H, (complemented) وأيضًا في الصيغة السالبة أو المنفية (complemented ينتج من الثكل رقم (؟) أن:
$A B C(f)=H \vee \bar{W} \vee \bar{B} \vee D \bar{E} \vee \bar{D} E=0$,
ومنها ينتج أن:

$$
\begin{equation*}
H=0, W=B=1, D \equiv E \tag{28}
\end{equation*}
$$

يمكن أن نصف الموقف المذكور بالمقدمات النالية:

يمكننا أن نجمع هذه المقدمات في صورة دالة واحدة f نساويها بالصفر على صورة:

$f=H \vee \bar{W} \vee H(W \bar{D} \vee \bar{W} D) \vee \bar{H}(W \bar{B} \vee \bar{W} B) \vee \bar{W} \bar{E} \vee$

 $W D \bar{E} \vee W \bar{D} E \vee D \bar{B} W \vee B \bar{W}=0$نلاحظ أن المقدمة الثالثة عن متتضيات الأمانة (1c) لا طائل منها طالما أن المسؤول ليس أمينًا، ولذا فإن الحد المعبر عنها في المعادلة (25) سيمتص في الحد H. بالمثل، فإن حصول المهنس على العمل (المقامة الثانية (1b)) يلغي

توظيف الطرية الاستثالاية الحديثة في /ستكثاف الجوانب الخفية ... 1.1

$$
\begin{equation*}
[\bar{A} \rightarrow \bar{D}, A\} \rightarrow\{B\} \tag{22}
\end{equation*}
$$

نظير خاطئ شهير على الصورة:
(WRONG)
وما هذا إلا مغالطة منطقية تنمى مغالطة المعكوس (Inverse fallacy) [99 ${ }^{\text {أو }}$ (مغالطة إنكار المقدمة (Fallacy of denying the antecedent) "•". مرة أخرى تنسفنا ط د ح في إبطال هذه المغالطة سريعا لأنها تصوغ مقدمتيها على الثكل:

$$
\begin{equation*}
f=\bar{A} B \vee \bar{A}=0 \tag{23}
\end{equation*}
$$

ومن ثم تتوصل إلى:

$$
\begin{equation*}
\operatorname{CS}(f)-\bar{A}-0 \tag{24}
\end{equation*}
$$

وبذا يتضح أن المقدمتين لا ندعمان غير النتيجة $\} A\}$ التي لا تتضمن النتيجة
المزعومة \}B\{.
£. أمثلة لتدارس المعضلات الأخلاقية بالطريقة الاستدلالية الحديثة
مثال أ:
يحاول مهندس استشاري الحصول على عمل من إحدى الجهات الحكومية، إلا أن المسؤول المختص يرفض أن يوكل إليه العمل ما لم يدفع إليه رشوة معينة، فهل من المقبول أخلاقياً أن يدفع المهنس الرشوة حتى يحصل على العمل؟ نقوم بتعريف الأخبار (Propositions) التالية:

معناه	رمز الخبر
يُوكل المسؤول العمل (Work) إلى المهنس.	W
المهنس مستحق (Deserving) أن يُوكل إليه العمل.	D
المسؤول أمين (Honest).	H
سلوك المهنس أخلاقي (Ethical).	E
يدفع المهنس الرشوة (Bribe) إلى المسؤول.	B

توليدها صادقة أصلا و(ب) كون قواعد الاستغلال الستنخدمة في توليدها سليمة. شاع استخذام قواعد استغلال مزعومة غير سليمة من الناحية الرياضية برغم أنها قد تشبه نوعًا ما قواعد الاستنلال السليمة، ومن ثم فقد تتطلي على غير Logical (التتخصين، وتعرف هذه القواعد الكاذبة بالمغالطات المنطقية
.(fallacies
أشهر فواعد الاستتلال هي طريقة الوضع (Modus Ponens)

$$
\begin{equation*}
\{A \rightarrow B, A\} \rightarrow\{B\}, \tag{17}
\end{equation*}
$$

لها نظير خاطئ شهير على الصورة

$$
\begin{equation*}
\{A \rightarrow B, B\} \rightarrow\{A\},(\text { WRONG }) \tag{18}
\end{equation*}
$$

Converse) وهذا النظير هو مغالطة منطقية تسمى مغالطة العكس Fallacy of affirming the) (fallacy (consequent تصوغ مقدمتيها في صورة المعادلة:

$$
\begin{equation*}
f=A \bar{B} \vee \bar{B}=0, \tag{19}
\end{equation*}
$$

ومن ثم تتوصل إلى:

$$
\begin{equation*}
C S(f)=\bar{B}=0 \tag{20}
\end{equation*}
$$

وبالنالي يتضح أن المقدمتين لا ندعمان سوى النتيجة \}B\}، وأما النتيجة المزعومة $1 A\}$ فلا يتسنى إثبات صحتها من $3 B\}$ ،. وبالمتل نلاحظ أن لطريقة الرفع :(Modus Tollens)

$$
\begin{equation*}
\{A \rightarrow B, \bar{B}\} \rightarrow\{\bar{A}\}, \tag{21}
\end{equation*}
$$

تجربة شهيرة قبيل مطلع القرن العشرين الميلادي) لا زالت تعيش في أذهان الكثير من إعلامينا، حين يبحثون إلينا بكلامهم عبر ما يسمونه "الأثير ". إن مناقشتتا السابقة نوضح كيف تعالج ط د ح بعض غرائب وأعاجيب المنطق الاستتباطي التي يترصدها خصومه، فإنها تحصن مستخدميها من الوقوع في فخ استخدام مقدمات غير متسقة لاستتباط نتيجة مرغوب فيها، وكيف تعزز ققرتهم على كشف مخادعة الآخرين لهم باستتباط ما يريدون من مقدمات غير منسقة. إن فعالية الطريقة في الحالتين هي إظهار ما يكون مخفيًا من عدم الاتساق من خلا إثبات أن المستخدم أن يمتتع تماما عن أن يستتبط شيئا من مجموعة المقدمات المعطاة. ويحسن به أن يراجع المقدمات ويغير بعضها للحصول على مجموعة متسقة. ثمة مجال علمي واسع يجري فيه معالجة المجموعة غير المتسقة وجعلها شبه متسقة (الذي يخرج عن نطاق المنطق الإخباري وطرائقه ومنها طريقة ط د ح ح) يعرف باسم "المناطق" شبه المتسقة (Para-consistent logics) [19]. وبيدو لنا أن الأقدمين اعنبروا كلمة "المنطق" (logic) ملازمة للإفراد ولا جمع لها، ولكن في النوجه الحديث لم يعد المنطق كينونة واحدة بل تعددت المناطق (Logics)، وقد استخدمنا هنا الجمع القياسي لوزن مفعِل على مفاعل. ولا ضير أن تكون "مناطق" جمعًا لكل من "منطق" و "منطقة" فذللك على غرار كون "مواقع" جمعًا لكل من "موقع" و "موقعة".

r-

تاريخبًا، لم يستعمل المنطق لعمل الاستتباطات السليمة فحسب بل استعمل أيضًا لترويج الأباطيل في صورة مستتبطات تبدو كما لو كانت صحيحة. لا يمكن أن تكون النتائج المستتبطة صادقة إلا في حال (أ) كون المقدمات المستخدمة في

وهو شرط جلي النتاقض. نلاحظ أن المقدمات غير المتسقة (مهما كانت درجة خفاء عدم انساقها) تتتهي مع ط د ح إلى الشرط (16) الذي يعني بوضوح أن مجموعة المقدمات ذانية النتاقض (Self-contradicting)، وأن خبر العطف بين أخبارها متيقن الكذب بحيث يستحيل أن نعين فيما محددة للمتغيرات المعنية تجعل جميع المقدمات صـادقة في آن واحد. ومن غرائب المنطق الاستتباطي أن عدم اتناق مجموعة المقدمات يكافئ صدق جميع النتائج أيا كانت \}رهذا ما ندل عليه ط د ح لأن أي مضروب يحتوي حرفيا (Subsumes) المضروب 1). إن استخدام مجموعة مقدمات غير متسقة من أشهر الوسائل للخداع باسم المنطق، حيث يمكن استخدام مثل هذه المجموعة (مع تحبيذ أن يكون عدم انساقها خفيا) لإثبات أية نتيجة يراد إثباتها، حتى لو كانت لا علاقة لها البتة ((irrelevant المتسقة يكمن أن نستخدم لإثبات أي خبر ونقيضه في آن واحد. ويمكن للقارئ
 المثال المستحقة له، وتأخذ المفاوضات طريقا مسدودا حين تفرض الإدارة مجموعة كبيرة من المقدمات غبر المتسقة التي يخفى عدم انتاقها، ثم تستتبط منها ما يحلو لها من نتائج، ويوضح المثال كيف يمكن أن يستعمل المهندس ط د ح لكشف التتاقض ودفع الظلم الذي يستهدفه. يقدم رشدي وباركب[هْ مثـالين آخرين على استعمال ط د ح في كثف زيف بعض الافتراضات العلمية التي كانت سائدة في القرن التاسع عشر الميلادي، ومنها فرضية وجود مادة الفلوجيسنون (Phlogiston) لتفسير ظاهرة الاحتراق وفرضية وجود مادة الإثير (Ether) لتفسير امتداد الموجات الكهربائية المغناطسية في الفراغ. والطريف أن فرضبة وجود الأثبر (التي حطنتها

$C S(f)=A \bar{B} \vee C \bar{D} \vee \bar{A} \bar{C} \vee \bar{B} \bar{C} \vee \bar{A} \bar{D} \vee \bar{B} \bar{D}=0$,

وبذلك فإن الطريقة الاستدلالية الحديثة نقول إن نتائج المعضلة البناءة تشمل فضلا عن نتيجتها النهائية جميع مقدماتها (وهذا معلوم بالضرورة عندما نكون المقدمات من الضامنات الأولية) بالإضافة إلى نتيجتين وسطيتين هما (BVC) و(AVD). إن ما يسمى بالنتيجة النهائية للقاعدة هو أقوى النتائج الممكنة أي هو آخر النتائج ظهورًا خلال عملية الاستتباط، ومن ثم فهو لا ينبني على المقدمات مباشرة وإنما ينطلب صحة النتائج الوسيطة أيضًا.
r - r القدرة على كثف عدم الاتسلق
تتمتع الطريقة الاستدلالية الحديثة بمقدرة ذاتية على الكثف عن وجود عدم اتساق أو نتاقض في مجموعة معطاة من المقدمات، وفي التصريح بالتناعيات الناشئة عن عدم الاتساق هذا.
نلاحظ أنه إذا كانت مجموعة المقدمات غير منسقة، فإن نتيجة العطف
(False) بين أخ القبارها تعطي الخبر متيقن الكذب المنطقية 0. وهذا يعني أن الدالة f محل الدراسة تكون لها القيمة المنطقية 1، غير أن ذللك لا يتضح عادة من التعبير الرياضي المتوفر لهذه الدالة. إن الطريقة الاستدلالية الحديثة نقوم في إجرائها الاعتيادي بحساب صيغة المجموع الكامل للالة (CS(f)، ومن ثم تحول أية تعبير رياضي معطى للدالة f (ذات القيمة 1 الخفية) إلى القيمة 1 صراحة، أي أنها تصل إلى النتيجة:

$$
\begin{equation*}
C S(f)=\mathbf{1} \tag{15}
\end{equation*}
$$

وإذا دمجنا هذه النتيجة مع المعادلة (10)، نحصل على الشرط:

$$
\begin{equation*}
1=0 \tag{16}
\end{equation*}
$$

من المقدمات، أو بعبارة أدق أنها تسمح بإنشاء برهان صوري لصحة أية قضية صحيحة. قبل عقود من الزمان، كان المفهوم أن نظامًا كاملًا للاسنتباط الطبيحي يمكن أن يتشكل من عشر من قواعد الإحلال مضافا إليها (Natural deduction)
 الحديثة من كونها تستخدم ضمنًا جميع قواعد الإحلال فضلاً عن أنها تبرهن على صدق جميع قواعد الاستدلال[ْ0] والمتأمل في البرهان الخاص بقاعدة الوضع (وبعض قواعد الاستدلال الأخرى) يجد أن فكرة نوليد التراضيات (Consensus generation) الجوهرية في الطريقة الاستدلالية الحديثة كامنة في هذه القواعد.

ثمة ملحوظة مهمة، وهو أن بعض قواعد الاستدلال الثهيرة لها نتائج متعددة لا تقتصر على النتيجة الوحيدة التي تتسب لها. وعلى سبيل المثال فإن القاعدة المعروفة باسم "المعضلة البناءة" (Constructive dilemma) لها الماء (B) المقدات ($A \vee C)$) ونسب لها نتيجة واحدة هي ($)(C \rightarrow D$) $(A \vee B)$ ط دح تضع المقدمات في صورة المعادلات الصفرية:

$$
\begin{equation*}
A \bar{R}=0, \tag{12a}
\end{equation*}
$$

$$
\begin{equation*}
c \bar{D}=0 \tag{12b}
\end{equation*}
$$

$$
\begin{equation*}
\bar{A} \bar{C}=0 \tag{12c}
\end{equation*}
$$

ومن ثم تجمعها في معادلة صفرية واحدة.

$$
\begin{equation*}
f=A \bar{B} \vee C \bar{D} \vee \bar{A} \bar{C}=0 \tag{13}
\end{equation*}
$$

ثم نشتق المجموع الكامل للدالة f السابقة على الصورة

(ج) المضرويان $A B$ و $\overline{\text { (}}$ بينهما أكثر من تضارب (تضاربان اثثان في هذه الحالة)، وتمثلهما حلقتان غير متداخلتان متباعدتان (لا حدود مثتركة بينهما)، ومن ثم يقال إن تراضيهما هو الصفر أو إنه لا تراضي بينهما.

شكل (ץ). توضيح تصويري لحقيقة أن مضروبين يولدان تراضيًا إذا وفقط إذا كان بينهما
تعارض واحد.
r. خصائص الطريقة الاستدلالية الحديثة (ط د ح)

فيما يلي نسرد بعض الخصائص المهمة للطريقة الاستدلالية الحديثة في
المنطق الإخباري:
1-ب طريقة كاملة (Complete)
إن الطريقة الاستدلالية الحدبثة هي طريقة كاملة للاستتباط المنطقي بمعنى أنها كافية (Sufficient) بذاتها لاسنتباط كل ما يمكن استتباطه من أية مجموعة

غير مكتملة بحيث لا تكفي لإثبات النتيجة المقترحة. وكل ما يمكن قوله في هذه الحالة هو أن مجموعة المقدمات المعطاة لا نؤيد أو لا تدعم النتيجة المقترحة.

(أ) المضرويان AB وBC لهما تضارب واحد، وتمثلهما حلقتان غير متداخلتين متثشاركتان في حدودهما عند الحد الفاصل بين B و B، ومن ثم فيمكن أن نضيف إلى اتحادهما التراضي AC.

(ب) المضرويان A و A (لا تضارب بينهما وتمثلهما حلقتان متداخلتان، ومن ثم يقال إن تراضيهما هو الصفر أو إنه لا تراضي بينهما.

احتواءه على ضامنات غبر أولية، أما عملية نوليد وإضافة التراضي فنؤدي على النقيض من ذلك إلى تكبير حجم مجموع المضروبات المعبر عن f، وهي ضرورية لمنع خلوه من بعض الضامنات الأولية.

؟- بعد الحصول على الدالة في صورة المجموع الكامل أي مجموع جميع ضامناتها الأولية، نساوي كل حد في هذا المجموع (أي كل ضامن أولي) بالصفر المنطقي فنحصل على جميع النتائج التي يمكن استتباطها من المعطيات وفي أبسط صورة ممكنة، أي نحصل على:

$$
\begin{equation*}
C S(f)=\vee_{i=1}^{\ell} P_{i}=0 \tag{10}
\end{equation*}
$$

ومن ثم يكون

$$
\begin{equation*}
P_{i}=0, \quad l \leq i \leq \ell \tag{11}
\end{equation*}
$$

وفي كثير من الأحيان تكون بعض النتائج مجرد نكرار أو تبسيط مباشر أو صدى واضحح للمعطيات، إلا أن بعض النتائج قد يكون مستغربًا بل ومذهلاً أحيانًا وذللك لكونه كامنا بصورة شديدة التخفي داخل المعطيات. ويلاحظ أن هذه الطريقة لا تتطلب من المستخدم طرح نتيجة يراد إثباتها (وضعها). وفي حالة ما إذا اقتزح المستخدم نتيجة معينة لهذا الغرض، فاٍٍ هذه اللنتيجة المقترحة يتم مقارنتها بالنتائج التي يتم الحصول عليها فإن كانت النتيجة المقترحة متضمنة في هذه النتائج، فإنها أي النتيجة المقترحة، تصدق وتثبت بقدر ما تصدق المعطيات وتثبت. أما إذا كانت النتيجة المقترحة غبر منضمنة في النتائج فهذا لا يعني بالضرورة نقض أو رفع أو رفض هذه النتيجة برغم صدق المقدمات لأنها - أي المقدمات قد تكون

$$
\begin{equation*}
\left(\frac{X \bar{Y} Z}{\bar{Y}}\right) \wedge\left(\frac{X Y \bar{W}}{Y}\right)=(X Z) \wedge(X \bar{W})=X Z \bar{W} \tag{7}
\end{equation*}
$$

في المعادلة (7) استخدمنا مفهوم خارج القسمة البولانية (Boolean quotient)، وهو مفهوم في تسميته تجاوز لأن الجبر البولاني لا يعرف القسمة أصلاً، ولكن تعريفه الرصين يحتاج إلى عملية نقيبد (Restriction) مسموح بها، أي أن:

$$
\begin{align*}
& \left(\frac{g}{h}\right)=(g)_{h=1} \tag{8a}\\
& \left(\frac{g}{h}\right)=(g)_{h=0} \tag{8b}
\end{align*}
$$

يمكنا الآن أن نضيف النراضي بين مضروبين إلى مجموعهما المنطقي دون أن يغير ذلك شيئا، أي دون أن يخل ذلك بقيمة ذلك المجموع، بمعنى أن:

$$
\begin{equation*}
X \bar{Y} Z \vee X Y \bar{W}=X \bar{Y} Z \vee X Y \bar{W} \vee X Z \bar{W}, \tag{9}
\end{equation*}
$$

ومن ناحية أخرى ناحظ أن المضروبين XYW ،XYZ ليس لهما تراض لعدم وجود تضارب بينهما، وكذلك المضروبان XYW $\bar{X} \bar{X} Z$ ليس لهما نراض لوجود أكثر من نضارب واحد بينهما. ويلخص الثكل رقم (ץ) مجموعة الحقائق سالفة الذكر المتعلقة بالتراضي بين مضروبين كما يعطي تمثيلاً تصويريًا لها باستخدام ما يعرف باسم خريطة كارنوه (Karnaugh map) التي يمكن النظر إليها كصورة مطورة من شكل فِنْ (Venn diagram)، كما يمكن اعتبارها جدولاً للصدق مرنبًا في بعدين (two dimensions) بدلاً من بعد واحد، ووفقًا لترمبز ثثائي منعكس (reflected binary coding) . ويلاحظ أن إعمال عملية الحذف على مجموع المضروبات المعبر عن الدالة f يؤدي إلى تصغير حجم هذا المجموع ويمنع

(Deletion) لحضروب في مجموع المضروبات (ل) (لحنف (المعبر عن الدالة f ، وذلك نتيجة لامتصـاص أو استغر اق (الما المضروب في مضروب (آلتمي لنفس المجموع، ويحدث ذلك إذا كانت مجموعة حروف المضروب الأول مجمو عة جزئية XY من مجموعة حروف المضروب الثاني، فمثلاً المضروب (Subset) يمتص في أي من المضروبات ومثلاً المضروب XVZZ $X \bar{X} Z$ يمتص في المضروب X عليه يمكننا أن نكتب

$$
\begin{equation*}
X \bar{Y} Z \vee X \bar{Y}=X \overline{Y_{1}} \tag{6}
\end{equation*}
$$

- توليد وإضافة التراضي (Consensus generation and addition) لمضروبين في مجموع المضروبات المعبر عن الدالة f، حيث يوجد التراضي بين مضروبين إذا وجد تعارض واحد بين مجموعة حروف المضروب الأول ومجموعة حروف المضروب الثاني أي إذا وجد متغير واحد ثثائي الصيغة (Biform) في المضروبين بمعنى وجوده بالصورة العادية في أحد المضروبين وبالصورة المعكوسة في الآخر، وفي هذه الحالة يكون تراضي المضروبين هو حاصل الضرب المنطقي لبقية حروف المضروبين مع حذف (Idempotency) الحروف المكررة إعمالاً لقاعدة تمانل . $X X \wedge X=X$ فمثلا المضروبان $X X Z$ Y نظرًا لوجود تضارب واحد بينهما نتيجة لوجود الحرف المعكوس XZW في المضروب الأول مع وجود الحرف العادي Y في المضروب الثاني، وقد نتجت قيمة التراضي من الضرب المنطقي:

$$
\begin{equation*}
T_{i} \rightarrow Q_{i}, \quad(n+1) \leq \mathrm{i} \leq m \tag{3}
\end{equation*}
$$

فإنها تأخذ الشكل الصفري النالي:

$$
\begin{equation*}
T_{i} \bar{Q}_{i}=0, \quad(n+1) \leq \mathrm{i} \leq m \tag{4}
\end{equation*}
$$

 للخبر
 اجتمع الشرطان $\left({ }^{(1)}\right.$ ($\left.T_{i} \rightarrow T_{i}\right)$) Q_{i}) فإن ذلك يؤدي إلى التكافؤ التام بين الخبرين ${ }^{2}$ و T_{i} كما في (1).
r- r- مجموعة المعطيات تكافئ معادلة واحدة تتشأ من مساواة دالة تبديلية واحدة بالصفر المنطقي وهذه الدالة تتشأ من المجمع المنطقي للصور الصفرية للمعطيات، فجموعة المعطيات الناتجة من اتحاد مجموعة المعطيات (1) مع مجموعة المعطيات (2) تكافئ:

$$
\begin{equation*}
f=\bigvee_{i=1}^{n}\left(T_{i} \bar{Q}_{\mathrm{i}} \vee \bar{T}_{i} Q_{i}\right) \vee \bigvee_{i=(n+1)}^{m} T_{i} \bar{Q}_{i}=0 \tag{5}
\end{equation*}
$$

r- يتم إعادة كتابة الدالة f الواردة في (5) في صورة مجموع منطقي لجميع ضامناتها الأولية (Prime implicants) وهذه الصورة تعرف باسم المجموع الكامل Blake Canonical (كما تعرف باسم صيغة بليك الإسنادية (Complete sum) (Form المجموع ومعظمها يعتمد على استخدام نتابع معين لنوعين من العمليات الهنطقية[9]، ${ }^{\text {10 }}$

كتابه الثهير عن الاستد لال البولاني والمعادلات البولانية[9 \& . ويمكن للقارئ أيضًا

 لها على الوصف العربي الوحيد المتاح لها [10]
إن الطربقة الاستدلالية الحديثة خوارزمية وليست تجربيبة الأسلوب بمعنى أنها تحدد للمستخدم عددًا محدودًا من الخطوات الواضحة يصل به إلى الحل دون الاعتماد على مهارة خاصة أو بصبرة ثاقبة من قبله. وهذه الطريقة تستخدم في طياتها وبصورة ضمنية جميع قواعد الإحال (Replacement rules) في المنطق[10، \&0، 00] كما يمكن إثبات أنها تمثل نوعًا من النوحيد لجميع قواعد الاستدلال (Inference rules) بمعنى أن أية قاعدة من قواعد الاستدلال ما هي إلا حالة خاصة من الحالات التي تتتاولها هذه الطربقة[[ه، \&، 00] ويمكن تلخيص خطوات هذه الطريقة فيما بلي [1ه]:
1- نفترض أن المعطيات أو المقدمات للمسألة محل الدراسة هي في صورة منساويات أو متكافئات منطقية على الثكل النالي:

$$
\begin{equation*}
T_{i} \equiv Q_{i}, \quad 1 \leq i \leq n \tag{1}
\end{equation*}
$$

فنقوم بتحويلها إلى الصورة الصفرية التالية:
$T_{i} \bar{Q}_{i} \vee \bar{T}_{i} Q_{i}=0, \quad 1 \leq i \leq n$.
حيث يرمز الرقم "0" للصفر المنطقي، ويدل الرمز "V" على المؤثر المنطقي "أو " (OR). أما إذا كانت هذه المعطيات أو بعضها في صورة علاقة احتواء منطقي Logical (والتي تسمى أيضًا بعلاقة الضمان المنطقي (Logical inclusion)

حققة ولا يحرك ساكن العلم، وكل دوره هو كثّف ما يكون مخفيًا أو مستخترًا في المقدمات. ومع هذا التواضع في تحديد هوية الاستتباط ونفعه، نقرر أنه لا بأس باستعماله كوسلة للاسترشاد لاستكشاف المسائل الغامضة والحرونة، وبصفة خاصة مسألة المعضلات الأخلاقية التي تهمنا هنا. ويصف الثكل رقم (1) خطنتا لهذا الاستكثاف. نلاحظ من الثكل أننا لا نضمن عدالة أو ضبط المصادر التي تددنا بالمعلومات، وأن خطوة تأويل ما لاينا من المعلومات مصاغة أصلاً باللغة الطبيعية بحيث تصبح مقدمات مصاغة بلغة الرياضيات هي خطوة غير معصومة من كثير من الزلل بسبب المغالطات غير الصورية التي تعنري اللغة الطبيعية. وبرجة أقل تعاني خطوة تنسير الننائج الرياضية باللغة الطبيعية من مشاكل مماثنلة. ولكن قلب عملية الاستتباط يظل عملية رياضية دقيقة نستعمل رموز وأساليب الرياضيات. خلاصة القول، إننا سوف نستعل هنا أساليب رياضية سليمة للاستتباط، ونجتهد ألا تكون خطوة النأويل السابقة أو خطوة التفسير اللاحقة مفسدة لسلامة عملية الاستتباط بأسرها. كل ما ينفعنا به الاستتباط هو أنه عملية حافظة للصدق (Truth-preserving) فإن كانت مقدماته الرياضية صادقة فإن نتائجه الرياضية تكون صادقة كذلك. ونؤكد أيضًا أن حجم الصسألة المنوط بها الاستتباط قد تحدد حاجتتا إلى أو استغنائنا عن الصياغة الرياضية أو الصورية للاستتباط، فإذا كانت المسألة صغيرة الحجم يمكن للعقل البشري (الذكي!) تتبعها في صورتها الكالمية غير الصورية، أما إذا زاد عدد متغيرات المسألةة زيادة مفرطة فيتغذر لأي إنسان الاستخناء عن الصياغة الرياضية والحسابات الخوارزمية.

r. وصف الطريقة الاستدلالية الحديثة

ظهر أول وصف للطريقة الاستذلالية الحديثة (ط دح) في رسالة الاكتوراه

للمنطق الصوري. إن اللنطق الصوري يسعى لنقيبي اللغة برمزيته الصططنعة المحدودة، وهو يمتل أداة لجعل كثير من الممارسات البشرية (كالطب والهندسة Dehumanized and (مثلاً) مجردة من العواطف الإنسانية والمناهج العقلانية . ${ }^{[9]]}$ (irrational
0. المنطق الصوري يرث قصور ونقائص الوصف اللنوي لعطلية التشخيص في الهنسة والطب، ومن ثم يجنح إلى التعقيد (Complexity) وعدم الاكتمال (Incompleteness) وعدم الاتصال (Discontinuity)، ولذلك فإنه ليس دائئًا الخيار الأفضل لدعم تثخيص الأعطاب والأمراض] [9"]. ד. إن براهين الصحة (Soundness) والاكتمال (Completeness) لا يمكنها أن نبرر نظامًا للاستتباط برغم أهييتها من الناحية التقتية، لأن هذه البراهين مبنية على الاستثلال الاستتباطي ولأن التنرير الاستتباطي للاستتباط لا يمكن أن يكون
 V V. من المشكوك فيه أن ينجح المنطق الصوري في نمذجة أو تصميم نظم

 9. إن المنطق الصوري لا يتمتع إلا بشيء فليل من الأساس العلمي ومن الفائدة العلية لأنه لا يستطيع أن يتفادى كثيرًا من المغالطات غير الا الصاير الصورية (التي تعاني منها اللغة العادية متل التجريد (Abstractionism) (Circularity) والاختزالية (Reductionism)، والدورانية) (F) وانتفاء العلاقة (Irrelevance)، والأسباب الكاذبة (False causes)، والتنسيط ${ }^{[9 .]}$ (Simplification)
ويتحدث بعض العلماء المعاصرين عما يسمونه تجاوزًا وتهكيًا بفضيحة أو عار الاستتباط (The scandal of deduction) [94، 99،، فالاستتباط لا يأتي بجديد

ا. " اعلم أن المنطق البونانـي لو بحتاج البيه الذكي ولا بنتفع منه البلبي "[^"] هذه مقولة شهيرة لشيخ الإسلام ابن تيمية رحمه الله تعالى، فضـلاً عن أن له كتابين شهبرين في نقض المنطق [^^] والرد على المنطقيين [^^^] والمنطت اليوناني الذي ذمه شيخ الإسلام هو نوع المنطت الاستنباطي الذي كان سائدًا في عصره. ولكن شيخ الإسلام كان يستعمل نوعًا من المنطت المنضبط إسـلامبًا، وهو يعتبر في الحقيقة أول مؤسس لما يعرف الآن باسم المنطق الاسنقرائي (Inductive . (logic
Y Y. " من تمنطق فقد تزندق"، هذه مقولة أخرى لشيخ الإسـلام رحمه الله تعالىى قالها لأن المنطت في عصره كان خادمًا طيعًا للفلسفة، ولم يكن اكتسب الحيادية التي بتمتع بها حاليًا بـعد أن أصبح فرعًا من الرباضبات. إشكالية ارنباط المنطت بالفلسفة أن الفلسفة عند الزنادقة أو الملاحدة تضاد الدين وسيلة وغاية، وهي عند المؤمنين تخالف الدين وسيلة ومنهجًا وإن كانت تؤازره قصدًا وغاية. وهذه المخالفة المنهجية (methodological) في الحالتين كلتيهما مصدر للبلبلة والثك وعدم اليقين. ولا يصح بحال فرض مقدمات منطقية في العقائد والإلهيات لأن ذلك يخالف نوحبد الأسماء والصفات. وخلاصة القول ضرورة قصر استعمالات المنطت على أمور دنيوبة قد بنفع فيها[10].
r. المنطق الصوري يتضمن نزع إلى النسامي (Argumentation) لأن المحاجة لا لاست دراسة المحاجة (Transcendence) تقع في مجال رؤبة المنطق [^^^، وربما لأن المنطق بربد حسمًا محددًا للحقائق، بينما المحاجة تعني النخلي المسبق عن أي النزام، والاستعداد (ظاهربًا على الأقل) للنزول على الرأي المخالف إذا انتصرت حجته. ₹. المنطق الصوري هو إساعة لاستخدام (Misuse of) اللغة العادية. فالأولوبة المعرفية (Epistemological primacy) هي للغة الطبيعية وليست

فهل هي ربا محرم أم هي رسوم إدارية؟ كما سيحدث خلاف في حال التيقن من كون الفوائد ربا حول هل الضرورة متحققة فعلاً بحيث ثبيح محظور أخذ هذا القرض الربوي؟ وقد يحدث خلاف آخر حول هل الأولى هو حل مشكلة الإفاس بالالتراض أم بالاندماج والاتحاد مع شركات أخرى؟ r, ا, . حول الاستنباط المنطقي
ثنة جدل عنيف في الأوساط العلمية حديثًا وقليمًا حول فائدة ونفع المنطق الصوري (Formal logic) السستعمل في الاستتباط المنطقي (Logic deduction).
 وقد بلغ الإعجاب بالمنطق الاستتباطي عند العالم الكبير ليينيز (Leibniz) حد الإفراط والغلو حيث ذهب إلى أن القياس اللنطقي (Syllogism) هو واحد من أجمل وأبرز ما نفتق عنه العقل البشري:
"I hold the invention of the syllogistic form to be one of the most beautiful inventions of the human mind, and indeed one of the most notable."

وقد أبدى ليينيز رأيه هذا رغم أنه نفسه مثتترك مع نيوتن (Newton) في ابتكار علم التقاضل والتكامل (Calculus)، وهو فرع الرياضيات الذي لعب الاور الأكبر في ترييض العلوم كلها أي في إسباغ صبغة الرياضيات عليها (Mathematization of all sciences)، وكان الأولى بالعالم لييبيز (من وجهة نظر شخصية على الأقل) أن يزعم أن التفاضل لا القياس هو الأعظم بين مبنكرات البشر • ومنل هذا الإعجاب المفرط بالمنطق عند أنصاره كان مجاوزًا للحد بطبيعة الحال وتسبب في ردة فعل عنيفة ضده، نلخص فيما يلي عددًا من الأقوال المهمة المعارضة للمنطق الصوري:

التي يتعرض لها ويحتاج لاتخاذ قرار فيها. ولكن الصحوبة تبرز في أن مبدأين أو أكثر من المبادئ الأخلاقية التي يمكن تطبيقها على هذه المشكلة قد يكون بينهما تعارض، أو أن مبدأ أخلاقيًا واحدًا ينطبق على هذه المشكلة ولكنه قد يؤدي إلى قرارين مختلفين بسبب الاختلاف في الفهم أو التفسير . فعلى سبيل المثال، قد يواجه المهندس الذي يعمل لدى شركة مشرفًا على تشييد برجٍ في مدينة مشكلة في أنه قد علم بأن شركته قد استخدمت تصاميم بها أخطاء حسابية إن لم تصحح فقد تؤدي إلى وقوع خسائر مادية وبشرية لسكان المدينة. وقد قام المهندس بواجبه الأخلاقي فنبه مدير الثركة عن هذا الخلل، إلا أن المدير طلب منه أن يغض الطرف وأن يواصل المشروع وكأن خطأ لم يكن. فالمهندس لديه مبدأ أخلاقي يطلب منه الحفاظ على أنفس وأموال سكان المدينة، ولكنه إن طبقه سيفضح تصاميم الشركة الخاطئة للمسؤولين وقد يدمر مستقبلها، ولديه مبدأ أخلاقي آخر يطبق على مشكلته يطلب منه أن يحافظ على أسرار العمل وعدم هتك حقوق الملكية الفكرية لدى الثركة التي يعمل بها. فأي المبدأين الأخالقيين بطبقه؟ ولماذا؟

ج- مشاكل الخلاف (Problems of Disagreement):

تحدث هذه المشاكل عندما يختلف أولو الرأي والنظر من الأفراد أو المجموعات حول تفسير وتطبيق وموازنة الأولويات للمبادئ الأخلاقية في حالات معينة. وتزداد درجة الخلاف ويصبح أكثر تعقيدًا داخل الثركات الهندسية التي لابد للأفراد أن يعملوا فيها معًا في إطار علاقات هيكلة السلطة والصاحيات. على سبيل المثال، عندما نواجه شركة هندسية مشكلة الإفلاس فإنها قد تضطر للبحث عن مصدر للتمويل فتأخذ قرضًا بفوائد لسد العجز وحل مشكلتها، فهنا سيحدث اختلاف بين أولي الرأي والنظر في الشركة حول تفسير طبيعة هذه الفوائد

- • . تتص مواثيق أعراف كثير من الجمعيات المهنية الهندسية على أنه لا يجوز للمهندس التعليق على مدى الكفاية المهنية لزملائه المهندسين. طالب مدير إحدى الثركات مهندسًا مرؤوسًا لـه بعمل نقويم مهني لمهندس منقام للعمل بنفس الشركة، فهل يحتبر الإدلاء بما يعرفه عن ذلك المتقدم انتهاكًا للأعراف الأخلاقية

الهندسية؟
من الأمثلة السابقة يتضح أن المعضلات تتشأ عندما يحدث تعارض بين اثثين أو أكثر من الالتزامات الأخلاقية أو الواجبات أو الحقوق أو المنتجات أو الأفكار، ويبدو أنه من غير المدكن مراعاتها جميعًا بالكامل، إذ يلزم حينئذ نقديم الأهم منها على المهم• يوجد - على الأقل- ثلاثة أنواع من التعقيدات، إن وريد في حالات ما فإنها تسبب المعضـلات الأخلاقية وهي: مشاكل الإبهام، ومشاكل الأسباب المتعارضة، ومثاكل الخلاف، وفيما يلي بيان لكلٍ منها إيضاحات مأخوذة من مجال ممارسة مهنة الهندسة.

أ- مشاكل الإبهام (Problems of Vagueness):

عند حدوث معضلة ما، قد يواجه الإنسان مشكلة عدم القدرة على تحديد أي المبادئ أو الاعتبارات الأخلاقية أجدر بالتطبيق وأحق بالتقديم. فعلى سبيل المثال، هناك دائمًا غموض كبير حول طبيعة "الهدية" المقدمة لمهندس من شركة تتعامل مع شركته، وهل يمكن فعليًا اعتبارها هدية رمزيَّة وأمرًا مقبولاً لا ضير منه ولا غبار عليه، أم أنها في واقع الأمر لا تعدو أن تكون سوى رشوة مستترة غبر مقبولة.

ب- مشاكل الأسبباب المتعارضة (Problems of Conflicting Reasons):

في هذا النوع من المعضهات - وهو الأكثر حدوثًا ووقوعًا- يكون واضحًا تمامًا لدى المرء أي المبادئ أو الاعتبارات الأخلاقية يمكن تطبيقها على المشكلة

يسمح للطلاب بأخذها معهم، كما أنه يحرص على ألا يجيب على هذه الأسئلة حتى وإن سئل عنها صراحة. هل يمتل هذا إخلالاً بالعدالة وإهدارًا لوظيفة الامتحان كأداة للنقويم الصحيح للطلاب؟ 7. هل يتحمل مصمم آلة قاطعة كالمخرطة أو المنشار الكهربائي المسؤولية إذا استخدم شخص هذه الآلة بصورة خاطئة أدت إلى بتر أصابعه؟ V لتفادي تفريغها للشحنات المتراكمة خلال أجساد مستخدميها من البشر • يقوم الناس بإزالة الخط الأرضي من قوابس هذه الأجهزة الكهربائية لتلائم مقابس (منابع) الكهرباء لهم. ما هي المسؤولية الأخلاقية لمن يزيل الخط الأرضي من القابس إذا تسبب في الصعق الكهربائي لإنسان؟
^. يوجد في الأسواق مذيبات قوية جدًا (يتشكل معظمها من حمض الكبريتيك المركز) يمكن استعمالها لتسليك البلاعات المسدودة بتذويب ما فيها من دهون منصلبة. يمثل استعمال هذه المذيبات خطورة شديدة، ولذلك تكتب تحذيرات تفصيلية على الزجاجات الحاوية لها. وبرغم أن هذه التحذيرات تكتب باللون الأحمر، فإنها نكتب بإسهاب واستفاضة شديدين قد يؤديان إلى ضجر القارئ، كما تكتب بخط صغير يتعذر تمييزه على الكثيرين. هل أبرأت الشركة المصنعة للمذيبات ذمتها بكتابة مثل هذه التحذيرات؟
9. من وجهة نظر الإحصاء، نوجد فروق إحصائية مهمة (Significant (statistical differences سرطان الرئة المفضي إلى الموت. نقوم شركات السجائر بكتابة تحذير على علب السجائر نتوه فيه بخطرها على صحة الإنسان، فهل أبرأت الشركات ذمتها بهذا التحذير؟ وما مدى مسؤولية من بساهم في تيسير وصول السجائر إلى المستهلك؟
r , ا . حول المعضلات الأخلاقية
المعضالات الأخلافية هي مشاكل مستغلقة لا يهتدى بسهولة إلى حلول مقبولة لها من الناحية الأخلاقية، وكما أسلفنا القول فإنها من أبرز أنواع المسائل
 بعض الأمثلة الثنائعة:

ا. هل يجوز للجراح أن يشرع في إجراء جراحة لمريض يغلب على الظن أنها قد تفضي إلى وفاة المريض؟ وإذا كان احتمال وفاة المريض عند إجراء العملية هو ل, ل، وكان احتمال وفاته بدون العملية هو لب، فما هو الحد الفاصل في العلاقة بين الاحتمالين ل, و لץ الذي ينقرر عنده إجراء العملية الجراحية؟ Y. هل بجوز لطالب أن ينتفع بأوراق كتب فيها أستاذه نسخة أولية لأسئلة الامتحان، علمًا بأن الطالب عثر على هذه الأوراق دون قصد من جانبه، وإنما بسبب إهمال الأستاذ الذي ترك الأوراق على الطاولة في قاعة الدرس؟ ب. تضـاف بعض المواد الحافظة إلى الأطعمة لتمديد فترة صلاحيتها، ولكن ثبت أن هذه المواد تسبب السرطان في حيوانات التجارب فهل يُسمح بالاسنمرار في استخدامها في الطعام الذي يستخدمه البشر؟ ؟. هل يجوز لمدير في إحدى الثركات نما إلى علمه نية الثركة إلى تسريح بعض مرؤوسيه أن يخبر هؤلاء المرؤوسين بمعلومانه قبل الإبـلاغ الرسمي لهم بشهر، وأن يسمح لهم بصرف أوقات العمل للبحث عن وظائف جديدة لدى شركات أخرى؟ ه. أستاذ جامعي يحنفظ بخمس نماذج لأسئلة الامتحان في المقرر الذي يدرسه، وهو يستعمل واحدًا منها بصورة عشوائية في كل فصل دراسي. وحرصًا على ألا بينداول الطلاب الأسئلة في الفصول التالية يحتفظ بأوراق الأسئلة ولا

كل مسألة حرونة تمتل مظهرًا أو عرضًا (Symptom) لمسألة حرونة
أخرى.

- يمكن تفسير مسببات (Causes) المشكلة أو المسألة الحرونة بطرائق عديدة، ويؤدي اختيار تفسير معين إلى تحديد طبيعة الأسلوب الملائم للحل.

لا مجال للخطأ عند التعامل مع المشاكل والمسائل الحرونة، إذ بينما تسمح المسائل الوديعة بوضع الفرضيات ثم نقضها بهذف الوصول إلى الحقيقة، فإن التعامل مع المشاكل والمسائل الحرونة يتطلب تتفيذ حل يهدف إلى تحسين خصائص العالم الذي نعيش فيه، ولذلك يتحمل القائمون بحل المشاكل والمسائل الحرونة المسؤولية عن كافة الإجراءات التي ينجزها الحل والتي قد تكون ضارة

وأهم وأثنهر المسائل الحرونة هي مسائل في الإدارة أو التخطيط بعيد المدى
 (design وقد بلغ الثبه بين مسائل النصميم الهندسي والمعضمات الأخلاقية حدا دعا إلى الانى

استخدام مسألة النصميم الهندسي كوسيلة لنمذجة المعضلات الأخلاقية[^^^] إن أهم قاعدة للتعامل مع المسائل الحرونة هي أنها يجب ألا تعامل معاملة المسائل الوديعة، بل يجب محاولة التعرف عليها أولاً تمهيدًا لتذليلها وتطويعها، فإن لم يتسن ذللك لزم العمل على إعادة تهيئة وتعديل وتكييف الثروط والأحوال الحاكمة لهذه المسائل. الأسلوب الأمتل للتعامل مع المسائل الحرونة هو مناقشتها بالتفصيل مع كافة المعنيين بها، واللتوصل إلى نوع من التراضي والتوافق بين الجميع من خلال طرح كل البدائل المتصورة لفهم المشكلة ومن خلال معرفة

المصالح والأولويات والقيود المتضاربة والمتتافسة.

حرونة أخرى. ولذلك ينصـح بالنوقف عندما نتضب الموارد المخصصة للحل، أو عند التوصل لنتيجة تبدو ظاهريًا أو يمكن جزافًا اعتبارها جيدة بما فيه الكفاية، أو عندما يشعر القائمون بالحل بعجزهم عن أن يأنوا بجديد مفيد. حلول المسألة الحرونة لا توصف بأنها صحيحة أو خاطئة، بل نقوَم وبقارن بينها بوصف بعضـها بأنه أفضل أو أسوأ من البعض الآخر، ومثل هذا النقويم يفنقر إلى الموضوعية إذ يعتمد كثيرا على شخصبة القائم به ومصالحه الخاصة ومنظومة القيم لدبه وانتماءاته الفكرية وما إلى ذلك. يتعذر اخنبار الحلول المقنرحة للمسألة الحرونة عاجلاً أو آجلاً، إذ لا

تعرف نتائج وعواقب أي حل إلا بعد نتفيذه فعلاً.
أي حل للمسألة الحرونة هو عملية متفردة قائمة بذاتها، حبث لا يمكن اختبار الحل بالتجربة والخطأ (Trial and error) لأن عواقب أي حل غبر معكوسة (Irreversible)، بل إن أية محاولة لتعديل الحل بعد تتفيذه أو لتصحيح عواقبه غير المرغوبة تولد مجموعة جديدة من المسائل الحرونة. ليس للمسألة الحرونة مجموعة من الحلول الممكنة يمكن تعدادها أو سردها بصورة مستتفدة، حيث لا يوجد معيار معين يحدد نهاية لهذا التعداد، ومن الوارد عدم التوصل إلى أي حل على الإطلاق بسبب التتاقضات المنطقية في الصورة المطروحة للمسألكة.

- كل مسألة حرونة وحيدة في بابها وفريدة في نوعها، فليس ثمة طوائف من المسائل أو المشاكل الحرونة تتشابه عناصرها بحيث يمكن حلها جميعها بأسلوب ممانل أو باستخدام نفس المبادئ.

■ المسأللة الوديعة نتوقف معالجتها عند نقطة نوقف محددة ينضتح عندها تمام التوصل إلى حل للمسألة.

- يمكن تقويم أي حل مقترح للمسألة الوديعة باعتباره حالً صحيحًا أو خاطنًا.
- قد تكون المسألة الودبعة معقدة (Complex)، ولكنها نقبل التحلبل والحل بالطرائق النتقبيية المعروفة خلال زمن مقبول، ويدخل ضمن ذلك المسائل غير القابلة للتتبع التي تتطلب خوارزمبات حلها زمنًا أسيًا، ولكن يمكن حلها نقربيبًا بواسطة خوارزمبات أو إجراءات نتقيبية سربعة.

■ أية مسألة وديعة نتتمي إلى طائفة من المسائل أو المشاكل الثبيهة التي يمكن حلها جميعها بأسلوب مماتل.

- المسألة الوديعة لها حلول يمكن تجربتها والعدول عنها إن اقتضى الأمر بدون خسائر تذكر [٪٪]

أما المسائل الحرونة فهي مسائل سيئة النتربف (Ill defined). تتسم بالإبهام (Consensus) ونفتقر إلى الحد الأدنى من النزاضني أو النوافق المعنيين بـها على تحديد ماهيتها فضلا عن اختيار الأسلوب المناسب لحلها، ومن ثم فهي تعاني من كثرة الآراء المتباعدة (Divergent opinions) حول وسائل حلها. نوجد عشرة معابير بتم عادة التعرف بها على المسألة الشربرة أو الحرونـة[ڭ٪: - لا نوجد صباغة محددة للمسألة الحرونة، ويتعذر إعطاء وصف تفصيلي لها ما لم بسبق ذلك محاولة للسرد المستتفد لكافة الحلول الممكن تصورها لها. ■ لا تتمتع المسألة الحرونة بقاعدة للتوقف، حيث لا بتث إطلاقًا بلوغ حل نهائي أو كامل أو تام الصحة، بل تتظور المسألة باستمرار ونتبثق عنها مسائل

ما يمكن اسنتتاجه منها في أبسط صورة ممكنة. الخطوة الأهم في هذه الطريقة هي خطوة حساب المجموع الكامل لدالة تبديلية (Switching) أو بولانية (Boolean) [^؛ ، . المجموع الكامل من البداية، إذ ثمة صورة تزايدية (Incremental) للطريقة تستفيد من المجموع الكامل الأصلي، وتبذل أقل جهد ممكن لتعديله إلى مجموع جديد[هم،

تم تتظيم البحث على النحو التالي: نتحدث عن المسائل الحرونة في الفصل الفرعي l, 1 كما نقدم وصفًا للمعضدلات الأخلاقية في الفصل الفرعي r, (، ونشير إلى الجدل الكبير حول المنطق الصوري أو الاسنتباط المنطقي في الفصل الفرعي r, ا. نخصص الفصلين الثاني والثالث لوصف الطريقة الاستدلالية الحدبثة وبيان خصائصها. نقدم في الفصل الرابع مدارسة لثلاث معضـلات أخلاقية شهيرة. نختتم الورقة بتعليق وخاتمة في الفصل الخامس. ا, ا . حول المسائل الحرونـة

إن مصطلح "المسائل الحرونة" أو "المسائل الشريرة" (Wicked (problems المسائل النقليدية المسماة بالمسائل الوديعة أو المذللة أو المروضة أو الخيرة (Tame or righteous problems) المسائل بملاحظة أن المسألة أو المشكلة الوديعة تتميز عن نظيرتها الشربرة بأنها
 المسألة الوديعة لها تعريف مسنقر حسن الصياغة.

نلاحظ أولاً أن مسائل المعضلات الأخلاقية لا نتدرج تحت طائفة المسائل حسنة الصياغة (Well-posed problems) التي يمكن حلها بالخوارزميات (Algorithms) باستخدام الإجراءات التجريبية أو التنقيبية أو الاستكثثافية (Heuristics) وإنما تتدرج تحت نوع أصعب كثيرًا من المسائل التي تسمى المسائل الحرونة أو الشريرة (Wicked)، وهذه مسائل لا نوجد أساليب (Techniques) أو مقاربات

من المتفق عليه أنَّ ثِمة منطق للاستغلال الأخلاقي (Ethical reasoning) له نفس البنية التي تتمتع بها صنوف الاستدلال الأخرى مثل الاستدلال الرياضي والعلمي والطبي والهندسي [「"] فالاستدلال عمومًا يبدأ بهذف ومبادئ ورجهة نظر حاكمة تفرض نوعا من الافتراضات (Assumptions) التي يمكن أن نسميها مقدمات (Premises) وهذه نتؤدي إلى مُنضمَّنات (Implications) أو نتائج (إن الانتقال من المقدمات إلى نتائج يتم ذهنيًا في وعاء اللغة (Consequences) الطبيعية وهو ما نسميه بالاستتباط غير الصوري (Informal deduction)، ولكنه يمكن أن ينم أيضا بشكل أكثر إحكاما في وعاء الرياضيات، وهذا ما نسميه بالاسنتباط الصوري (Formal deduction).

نقترح هنا استخدام الاستتباط المنطقي كوسيلة استكثافية لمسائل المعضلات الأخلافية، حيث نقوم بتدارس سيناريوهات مختلفة أو مقدمات مختلفة تصف معضلة أخالقية معينة من وجهات نظر متباينة. نتم الاستفادة من النتائج المختلفة التي يتم الحصول عليها في تفهم المعضلة والتعامل معها تحت ظروف مختلفة. نقام هنا طريقة قوية للاستتباط في المنطق الإخباري تسمى الطريقة

الكفاية هي خوارزمية بليك- تايسون المحسنة. وللطريقة الاسندلالية الحديثة صورة نزايدبة تضيف إلى مجموعة المقدمات الأصلية بعض المقدمات الجديدة، ثم تسعى لإيجاد النواتج المجددة نزايديًا أبي بدون الحاجة إلى إعادة حساب المجموع الكامل من البداية. نوظف هذه الطربقة في تدارس سيناريوهات مختلفة أو مقدمات مختلفة تصف معضلة أخلاقية معينة من وجهات نظرية متباينة. تفبد المقارنة بين نتائج هذه السبناريوهات في النوصل لحلول مقبولة لعدد من المعضلات المهمة من بينها معضلة اضطرار المرء لدفع رشوة للحصول على حقه، ومعضلة الاستهلاك الآدمي للأغذية المعدّلة وراثنًا ومعضلة التخلص من مادة غذائية بأكملها إذا لحق بعضها نجاسة. العمل المقدم في هذه الورقة هو تمهيد أولي لبناء حزمة برمجية للمعاونة في حل المعضدات مع استخدام مقدمات منضبطة بأصول وقواعد الفقه الإسلامي في صور حتمية أو في صور تخص المنطق الضبابي أو المنطق الضبابي الحدسي.
/الكمات الدالة: المعضلات الأخلاقية، الاسنتباط، المنطق الإخباري، الطريقة الاستذلالية الحدبثة، وجهات النظر المتباينة.

ا. المقدمة

تقنين وسائل رياضية للتعامل مع المعضلات الأخلاقية الهندسية، وهي المشاكل الصعبة التي لا يتيسر الوصول إلى حل لها يكون مقبولاً من الناحية الأخلاقية. وهذه المعضلات صارت ظاهرة مهمة في الحياة المهنية الحديثة[1-؛؛، وصارت دراستها ركيزة أساسية في فهم أخلاقيات المهنة أو العمل[ه-91، كما أصبح من الضروري التعامل معها لأجل تتاولها من منظور إسلامي [.r-؛ ؛.]

توظيف الطريقة الاستدلالية الحديثة في استكثشاف الجوانب الخفية في المعضـلات الأخلاقية الهندسية

علي محمد رشدي وطالب منصور الشهري
ومحمد محسن الزروان ومحمد علي رشدي
قسم الهنسة الكهرائية وهندسة الحاسبات، كلية اللمنسة،
جامعة الملك عبدالعزيز، جدة، الدملكة العربية السعودية * قسم الهنسة الطبية وهندسة النظم، كلية الهنستة، جامعة القالهرة، الجيزة، جمهورية مصر العربية arushdi@kau.edu.sa
لنقص في القواعد والمبادئ الأخلاقية التي يمكن الرجوع إليها وإنما
لأسباب أهها الإبهام وتعارض المصالح والخلاف على الأولويات.
تنتزح ورةة البحث الاستعانة بالاستشباط اللنطقي في استكثشان
الجوانب الففية في المغضلات الأخلاقية الهناسية مما قـ يعين على
حلها. نتّم الورقة طريقة فوية للاستتباط في المنطق الإخباري تسمى
الطريقة الاستدلالية الحديثة. تستخلص هذه الطريقة من مجموعة من
المقدمات كل ما يمكن استتتاجه منها في أبسط صورة ممكنة. نقوم
هذه الطريقة بصباغة مجموعة المقدمات في صورة دالة تبديلية واحدة
مساوية للصفر ، ثم تحسب المجموع الكامل لهذه الدالة كاتحاد لكل
النواتج الأولية، حيث يتم اشتقاق الكجوع الكامل بطربقة عالية
(القســم العربي)

المحتويات

中 القسم العربي هي

صفـحة
توظيف الطريقة الاستدلالية الحديثة في استكشاف الجوانب الخفية في المعضلات الأخلاقية الهندسية.
علي محمد رشدي، طالب منصور الشهري، محمد محسن الزروان، محمد Vr

استخدام وتعديل اطار عمل لكشف التفاعلات ذات الخصوصية في خدمات الويب (المستخلص العربي).
εq
أحمد خمسي، زهير شنتوف

جدوى التحقق وتقييم الأداء للفضاء المعتمد على الشبكات المخصصة للمركبات (المستخلص العربي). 79

رئيسًا
قسـم علوم الحـاسبـات
أ.د. كمال منصور جمبي kjambi@kau.edu.sa

قسـم نظم المعلومات
أ.د. خالد عبدالله فقيهه
kfakeeh@kau.edu.sa

عضـوًا
قسـم علوم الحاسـبـات
أ.د. فتتي البري عيسى
feassa@kau.edu.sa

عضـوًا
قسـم تقنية المعلومات
أ.د. حسنين محمد البرهمتوشي hassanin@kau.edu.sa

> جامعـة ميرلاند - أمريكا

أ.د. فيكتور ر. باسيلي basili@cs.umd.edu

> قسـم تقنية المعلومات عضوًا
أ.د. عبدالفتاح سليمان مشـاط asmashat@kau.edu.sa

■ سعر النسخة

داخل المملكة • ا ريالات سعودية

- خارج المملكة • ا دولارات أمريكية
- البيع والاشتراك

مركز النشر العلمي - جامعة الملك عبدالعزيز

التبادل

عمادة شئون المكتبات - جامعة الملك عبدالعزيز

مطابع جامعة الملك عبد العزيز


```
                                    ردم
                                    رقم
```


مجلـة

جاهعة الملك عوب العزيغ علوم الحاسبـات وتقنية المعلومات

المجلد
r.le
ه 1 \&r7

مركز النشر العلمي
جامعة الملك عبد العزيز

http://spc.kau.edu.sa

8

